[1]
|
Somero, G.N. (1997) Temperature Relationships: From Molecules to Biogeography. In: Dantzler, W.H., Ed., Handbook of Physiology: Section 13: Comprehensive Physiology Two-Volume Set., Oxford University Press, Oxford, 1391-1444. https://doi.org/10.1002/cphy.cp130219
|
[2]
|
Akanuma, S., Yamagishi, A., Oshima, T. and Tanaka, N. (1998) Serial Increase in the Thermal Stability of 3-Isopropylmalate Dehydrogenase from Bacillus subtilis by Experimental Evolution. Protein Science, 7, 698-705. https://doi.org/10.1002/pro.5560070319
|
[3]
|
Setlow, P. (2006) Spores of Bacillus subtilis: their Resistance to and Killing by Radiation, Heat and Chemicals. Journal of Applied Microbiology, 101, 514-525. https://doi.org/10.1111/j.1365-2672.2005.02736.x
|
[4]
|
Matsuura, Y., Takehira, M., Joti, Y., Ogasahara, K., Tanaka, T., Ono, N., Kunishima, N. and Yutani, K. (2015) Thermodynamics of Protein Denaturation at Temperatures over 100℃: CutA1 Mutant Proteins Substituted with Hydrophobic and Charged Residues. Scientific Reports, 5, 1-9. https://doi.org/10.1038/srep15545
|
[5]
|
Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W. and Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., Represents a Novel Group of Archaea, Extending the Upper Temperature Limit for Life to 113℃. Extremophiles, 1, 14-21. https://doi.org/10.1007/s007920050010
|
[6]
|
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T. and Horikoshi, K. (2008) Cell Proliferation at 122℃ and Isotopically Heavy CH4 Production by a Hyperthermophilic Methanogen under High-Pressure Cultivation. Proceedings of the National Academy of Sciences, 105, 10949-10954. https://doi.org/10.1073/pnas.0712334105
|
[7]
|
Chakravarty, S. and Varadarajan, R. (2000) Elucidation of Determinants of Protein Stability through Genome Sequence Analysis. FEBS Letters, 470, 65-69. https://doi.org/10.1016/S0014-5793(00)01267-9
|
[8]
|
Maeda, N., Kanai, T., Atomi, H. and Imanaka, T. (2002) The Unique Pentagonal Structure of an Archaeal Rubisco Is Essential for Its High Thermostability. Journal of Biological Chemistry, 277, 31656-31662. https://doi.org/10.1074/jbc.M203117200
|
[9]
|
Sato, T., Atomi, H. and Imanaka, T. (2007) Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism. Science, 315, 1003-1006. https://doi.org/10.1126/science.1135999
|
[10]
|
Dong, H., Mukaiyama, A., Tadokoro, T., Koga, Y., Takano, K. and Kanaya, S. (2008) Hydrophobic Effect on the Stability and Folding of a Hyperthermophilic Protein. Journal of Molecular Biology, 378, 264-272. https://doi.org/10.1016/j.jmb.2008.02.039
|
[11]
|
Taylor, T.J. and Vaisman, I.I. (2010) Discrimination of Thermophilic and Mesophilic Proteins. BMC Structural Biology, 10, S5. https://doi.org/10.1186/1472-6807-10-S1-S5
|
[12]
|
Aono, R., Sato, T., Imanaka, T. and Atomi, H. (2015) A Pentose Bisphosphate Pathway for Nucleoside Degradation in Archaea. Nature Chemical Biology, 11, 355-360. https://doi.org/10.1038/nchembio.1786
|
[13]
|
Higashibata, H., Fujiwara, S., Ezaki, S., Takagi, M., Fukui, K. and Imanaka, T. (2000) Effect of Polyamines on Histone-Induced DNA Compaction of Hyperthermophilic Archaea. Journal of Bioscience and Bioengineering, 89, 103-106. https://doi.org/10.1016/S1389-1723(00)88061-5
|
[14]
|
Atomi, H., Matsumi, R. and Imanaka, T. (2004) Reverse Gyrase Is Not a Prerequisite for Hyperthermophilic Life. Journal of Bacteriology, 186, 4829-4833. https://doi.org/10.1128/JB.186.14.4829-4833.2004
|
[15]
|
Matsuno, Y., Sugai, A., Higashibata, H., Fukuda, W., Ueda, K., Uda, I., Sato, I., Itoh, T., Imanaka, T. and Fujiwara, S. (2009) Effect of Growth Temperature and Growth Phase on the Lipid Composition of the Archaeal Membrane from Thermococcus kodakaraensis. Bioscience, Biotechnology, and Biochemistry, 73, 104-108. https://doi.org/10.1271/bbb.80520
|
[16]
|
Boyd, E.S., Pearson, A., Pi, Y., Li, W.J., Zhang, Y.G., He, L., Zhang, C.L. and Geesey, G.G. (2011) Temperature and pH Controls on Glycerol Dibiphytanyl Glycerol Tetraether Lipid Composition in the Hyperthermophilic Crenarchaeon Acidilobus sulfurireducens. Extremophiles, 15, 59-65. https://doi.org/10.1271/bbb.80520
|
[17]
|
Ward, D.M., Castenholz, R.W. and Miller, S.R. (2012) Cyanobacteria in Geothermal Habitats. In: Whitton, B.A. and Potts, M., Eds., Ecology of Cyanobacteria II, Springer, Dordrecht, 39-63. https://doi.org/10.1007/978-94-007-3855-3_3
|
[18]
|
Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauß, N. (2001) Three-Dimensional Structure of Cyanobacterial Photosystem I at 2.5 Å Resolution. Nature, 411, 909-917. https://doi.org/10.1038/35082000
|
[19]
|
Zouni, A., Witt, H.T., Kern, J., Fromme, P., Krauss, N., Saenger, W. and Orth, P. (2001) Crystal Structure of Photosystem II from Synechococcus elongatus at 3.8 Å Resolution. Nature, 409, 739-743. https://doi.org/10.1038/35055589
|
[20]
|
Nakamura, Y., Kaneko, T., Sato, S., Ikeuchi, M., Katoh, H., Sasamoto, S., Watanabe, A., Iriguchi M., Kawashima, K., Kimura, T. Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M. and Kishida, Y. (2002) Complete Genome Structure of the Thermophilic Cyanobacterium Thermosynechococcus elongatus BP-1. DNA Research, 9, 123-130. https://doi.org/10.1093/dnares/9.4.123
|
[21]
|
Tanaka, N. and Nakamoto, H. (1999) HtpG Is Essential for the Thermal Stress Management in Cyanobacteria. FEBS Letters, 458, 117-123. https://doi.org/10.1016/S0014-5793(99)01134-5
|
[22]
|
Nakamoto, H., Suzuki, N. and Roy, S.K. (2000) Constitutive Expression of a Small Heat-Shock Protein Confers Cellular Thermotolerance and Thermal Protection to the Photosynthetic Apparatus in Cyanobacteria. FEBS Letters, 483, 169-174. https://doi.org/10.1016/S0014-5793(00)02097-4
|
[23]
|
Gerhardt, P. and Marquis, R.E. (1989) Spore Thermoresistance Mechanisms. In: Slepecky, R.A. and Setlow, P., Eds., Regulation of Procaryotic Development, American Society for Microbiology, Washington DC, 43-63.
|
[24]
|
Hengherr, S., Worland, M.R., Reuner, A., Brümmer, F. and Schill, R.O. (2009) High-Temperature Tolerance in Anhydrobiotic Tardigrades Is Limited by Glass Transition. Physiological and Biochemical Zoology, 82, 749-755. https://doi.org/10.1086/605954
|
[25]
|
Hengherr, S., Heyer, A.G., Köhler, H.R. and Schill, R.O. (2008) Trehalose and Anhydrobiosis in Tardigrades: Evidence for Divergence in Responses to Dehydration. FEBS Journal, 275, 281-288. https://doi.org/10.1111/j.1742-4658.2007.06198.x
|
[26]
|
Welnicz, W., Grohme, M.A., Kaczmarek, L., Schill, R.O. and Frohme, M. (2011) Anhydrobiosis in Tardigrades: The Last Decade. Journal of Insect Physiology, 57, 577-583. https://doi.org/10.1016/j.jinsphys.2011.03.019
|
[27]
|
Hinton, H. E. (1960) A Fly Larva That Tolerates Dehydration and Temperatures of -270 to +102℃. Nature, 188, 336-337. https://doi.org/10.1038/188336a0
|
[28]
|
Sakurai, M., Furuki, T., Akao, K.I., Tanaka, D., Nakahara, Y., Kikawada, T., Watanabe, M. and Okuda, T. (2008) Vitrification Is Essential for Anhydrobiosis in an African Chironomid, Polypedilum vanderplanki. Proceedings of the National Academy of Sciences, 105, 5093-5098. https://doi.org/10.1073/pnas.0706197105
|
[29]
|
Mei, J.X. and Cheng, Z.J. (1990) Effects of Temperature on Physiological Activities of Nostoc flagelliforme Born et Flah. Journal of Northwest Normal University, 1, 75-85. (In Chinese with English Summary)
|
[30]
|
Gao, K. (1998) Chinese Studies on the Edible Blue-Green Alga, Nostoc flagelliforme: A Review. Journal of Applied Phycology, 10, 37-49. https://doi.org/10.1023/A:1008014424247
|
[31]
|
Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005) Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune. Applied and Environmental Microbiology, 71, 7327-7333. https://doi.org/10.1128/AEM.71.11.7327-7333.2005
|
[32]
|
Kimura, S., Tomita-Yokotani, K., Igarashi, Y., Sato, S., Katoh, H., Abe, T., Sonoike, K. and Ohmori, M. (2015) The Heat Tolerance of Dry Colonies of a Terrestrial Cyanobacterium, Nostoc sp. HK-01. Biological Sciences in Space, 28, 12-18. https://doi.org/10.2187/bss.29.12
|
[33]
|
Kimura, S., Tomita-Yokotani, K., Katoh, H., Sato, S. and Ohmori, M. (2017) Complete Life Cycle and Heat Tolerance of Dry Colonies of a Terrestrial Cyanobacterium, Nostoc sp. HK-01. Biological Sciences in Space, 31, 1-8. https://doi.org/10.2187/bss.31.1
|
[34]
|
Katoh, H., Shiga, Y., Nakahira, Y. and Ohmori, M. (2003) Isolation and Characterization of a Drought-Tolerant Cyanobacterium, Nostoc sp. HK-01. Microbes and Environments, 18, 82-88. https://doi.org/10.1264/jsme2.18.82
|
[35]
|
Yoshimura, H., Ikeuchi, M. and Ohmori, M. (2006) Up-Regulated Gene Expression during Dehydration in a Terrestrial Cyanobacterium, Nostoc sp. Strain HK-01. Microbes and Environments, 21, 129-133. https://doi.org/10.1264/jsme2.21.129
|
[36]
|
Yoshimura, H., Kotake, T., Aohara, T., Tsumuraya, Y., Ikeuchi, M. and Ohmori, M. (2012) The Role of Extracellular Polysaccharides Produced by the Terrestrial Cyanobacterium Nostoc sp. Strain HK-01 in NaCl Tolerance. Journal of Applied Phycology, 24, 237-243. https://doi.org/10.1007/s10811-011-9672-5
|
[37]
|
Arai, M., Tomita-Yokotani, K., Sato, S., Hashimoto, H., Ohmori, M. and Yamashita, M. (2008) Growth of Terrestrial Cyanobacterium, Nostoc sp., on Martian Regolith Simulant and Its Vacuum Tolerance. Biological Sciences in Space, 22, 8-17. https://doi.org/10.2187/bss.22.8
|
[38]
|
Kimura, Y., Kimura, S., Sato, S., Katoh, K., Abe, T., Arai, M. and Tomita-Yokotani, K. (2015) Evaluation of a Cyanobacterium, Nostoc sp. HK-01, as Food Material for Space Agriculture on Mars. Biological Sciences in Space, 29, 24-31. https://doi.org/10.2187/bss.29.24
|
[39]
|
Kimura, Y., Kimura, S., Sato, S. and Tomita-Yokotani, K. (2016) The Function and Utilization of a Terrestrial Cyanobacterium, Nostoc sp. HK-01, as Space Food Eco-Engineering, 28, 43-51. (In Japanese with English Summary)
|
[40]
|
Kimura, S., Inoue, K., Katoh, H., Ichikawa, S. and Tomita-Yokotani, K. (2017) Tolerance and Growth of a Terrestrial Cyanobacterium, Nostoc sp. HK-01 under Harsh Environments. Proceedings of the 47th International Conference on Environmental Systems, ICES-2017-150.
|
[41]
|
Tomita-Yokotani, K., Kimura, S., Kimura, Y., Igarashi, Y., Ajioka, R., Sato, S., Katoh, H. and Baba, K. (2013) Dried Colony in Cyanobacterium, Nostoc sp. HK-01: The Several High Environment Tolerances for Tanpopo Mission. The International Astrobiology Workshop 2013, Poster Session, 1033.
|
[42]
|
Katoh, H., Furukawa, J., Tomita-Yokotani, K. and Nishi, Y. (2012) Isolation and Purification of an Axenic Diazotrophic Drought-Tolerant Cyanobacterium, Nostoc commune, from Natural Cyanobacterial Crusts and Its Utilization for Field Research on Soils Polluted with Radioisotopes. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1817, 1499-1505. https://doi.org/10.1016/j.bbabio.2012.02.039
|
[43]
|
Verseux, C., Baqué, M., Lehto, K., de Vera, J.P.P., Rothschild, L.J. and Billi, D. (2016) Sustainable Life Support on Mars: The Potential Roles of Cyanobacteria. International Journal of Astrobiology, 15, 65-92. https://doi.org/10.1017/S147355041500021X
|
[44]
|
Rothschild, L.J. and Mancinelli, R.L. (2001) Life in Extreme Environments. Nature, 409, 1092-1101. https://doi.org/10.1038/35059215
|
[45]
|
Bertocchi, C., Navarini, N., Cesaro, A. and Anastasio, M. (1990) Polysaccharides from Cyanobacteria. Carbonhydrate Polymers, 12, 127-153. https://doi.org/10.1016/0144-8617(90)90015-K
|
[46]
|
Ehling-Schulz, M., Bilger, W. and Scherer, S. (1997) UV-B-Induced Synthesis of Photoprotective Pigments and Extracellular Polysaccharides in the terrestrial Cyanobacterium Nostoc commune. Journal of Bacteriology, 179, 1940-1945. https://doi.org/10.1128/jb.179.6.1940-1945.1997
|
[47]
|
De Philippis, R. and Vincenzini, M. (1998) Exocellular Polysaccharides from Cyanobacteria and Their Possible Applications. FEMS Microbiology Reviews, 22, 151-175. https://doi.org/10.1111/j.1574-6976.1998.tb00365.x
|
[48]
|
Knowles, E.L. and Castenholz, R.W. (2008) Effect of Exogenous Extracellular Polysaccharides on the Desiccation and Freezing Tolerance of Rock-Inhabiting Phototrophic Microorganisms. FEMS Microbiology Ecology, 66, 261-270. https://doi.org/10.1111/j.1574-6941.2008.00568.x
|
[49]
|
Mager, D.M. and Thomas, A.D. (2011) Extracellular Polysaccharides from Cyanobacterial Soil Crusts: A Review of Their Role in Dryland Soil Process. Journal of Arid Environments, 75, 91-97. https://doi.org/10.1016/j.jaridenv.2010.10.001
|
[50]
|
Adams, G.D. and Duggan, S.P. (1999) Tansley Review No. 107. Heterocyst and Akinete Differentiation in Cyanobacteria. The New Phytologist, 144, 3-33. https://doi.org/10.1046/j.1469-8137.1999.00505.x
|
[51]
|
Kaplan-Levy, R.N., Hadas, O., Summers, M.L., Rücker, J. and Sukenik, A. (2010) Akinetes: Dormant Cells of Cyanobacteria. In: Lubzens, E., Cerdá, J. and Clark, M.S. Eds., Topic in Current Genetics 21; Dormancy and Resistance in Harsh Environments, Springer, Berlin, Heidelberg, 5-27. https://doi.org/10.1007/978-3-642-12422-8_2
|
[52]
|
Sukenik, A., Maldener, I., Delhaye, T., Viner-Mozzini, Y., Sela, D. and Bormans, M. (2015) Carbon Assimilation and Accumulation of Cyanophycin during the Development of Dormant Cells (Akinetes) in the Cyanobacterium Aphanizomenon ovalisporum. Frontiers in Microbiology, 6, 1067. https://doi.org/10.3389/fmicb.2015.01067
|
[53]
|
Crowe, J.H., Carpenter, J.F., and Crowe, L.M. (1998) The Role of Vitrification in Anhydrobiosis. Annual Review of Physiology, 60, 73-103. https://doi.org/10.1146/annurev.physiol.60.1.73
|
[54]
|
Potts, M. (1999) Mechanisms of Desiccation Tolerance in Cyanobacteria. European Journal of Phycology, 34, 319-328. https://doi.org/10.1080/09670269910001736382
|
[55]
|
Potts, M. (2001) Desiccation Tolerance: A Simple Process? Trends in Microbiology, 9, 553-559. https://doi.org/10.1016/S0966-842X(01)02231-4
|
[56]
|
Mensink, M.A., Frijlink, H.W., Van der Voort Maarschalk, K. and Hinrichs, W.L.J. (2017) How Sugars Protect Proteins in the Solid State and during Drying (Review): Mechanisms of Stabilization in Relation to Stress Conditions. European Journal of Pharmaceutics and Biopharmaceutics, 114, 288-295. https://doi.org/10.1016/j.ejpb.2017.01.024
|
[57]
|
Hershkovitz, N., Oren, A. and Cohen, Y. (1991) Accumulation of Trehalose and Sucrose in Cyanobacteria Exposed to Matric Water Stress. Applied and Environmental Microbiology, 57, 645-648.
|
[58]
|
Hill, D.R., Peat, A. and Potts, M. (1994) Biochemistry and Structure of the Glycan Secreted by Desiccation-Tolerant Nostoc commune (Cyanobacteria). Protoplasma, 182, 126-148. https://doi.org/10.1007/BF01403474
|
[59]
|
Blomberg, A. (2000) Metabolic Surprises in Saccharomyces cerevisiae during Adaptation to Saline Conditions: Questions, Some Answers and a Model. FEMS Microbiology Letters, 182, 1-8. https://doi.org/10.1111/j.1574-6968.2000.tb08864.x
|
[60]
|
Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of Plant Desiccation Tolerance. Trends in Plant Science, 6, 431-438. https://doi.org/10.1016/S1360-1385(01)02052-0
|
[61]
|
Potts, M. (2000) Nostoc. In: Whitton, B.A. and Potts, M., Eds., The Ecology of Cyanobacteria, Springer, Dordrecht, 465-504.
|
[62]
|
Elbein, A.D., Pan, Y.T., Pastuszak, I. and Carroll, D. (2003) New Insights on Trehalose: A Multifunctional Molecule. Glycobiology, 13, 17-27. https://doi.org/10.1093/glycob/cwg047
|
[63]
|
Higo, A., Katoh, H., Ohmori, K., Ikeuchi, M. and Ohmori, M. (2006) The Role of a Gene Cluster for Trehalose Metabolism in Dehydration Tolerance of the Filamentous Cyanobacterium Anabaena sp. PCC 7120. Microbiology, 152, 979-987. https://doi.org/10.1099/mic.0.28583-0
|
[64]
|
Jönsson, K.I. and Persson, O. (2010) Trehalose in Three Species of Desiccation Tolerant Tardigrades. Open Zoology Journal, 3, 1-5. https://doi.org/10.2174/1874336601003010001
|
[65]
|
Klähn, S. and Hagemann, M. (2011) Compatible Solute Biosynthesis in Cyanobacteria. Environmental Microbiology, 13, 551-562. https://doi.org/10.1111/j.1462-2920.2010.02366.x
|
[66]
|
Carpenter, J.F. and Crowe, J.H. (1988) The Mechanism of Cryoprotection of Proteins by Solutes. Cryobiology, 25, 244-255. https://doi.org/10.1016/0011-2240(88)90032-6
|
[67]
|
Göller, K. and Galinski, E.A. (1999) Protection of a Model Enzyme (Lactate Dehydrogenase) against Heat, Urea and Freeze-Thaw Treatment by Compatible Solute Additives. Journal of Molecular Catalysis B: Enzymatic, 7, 37-45. https://doi.org/10.1016/S1381-1177(99)00043-0
|
[68]
|
Diamant, S., Eliahu, N., Rosenthal, D. and Goloubinoff, P. (2001) Chemical Chaperones Regulate Molecular Chaperones in Vitro and in Cells under Combined Salt and Heat Stresses. Journal of Biological Chemistry, 276, 39586-39591. https://doi.org/10.1074/jbc.M103081200
|
[69]
|
Sawangwan, T., Goedl, C. and Nidetzky, B. (2010) Glucosylglycerol and Glucosylglycerate as Enzyme Stabilizers. Biotechnology Journal, 5, 187-191. https://doi.org/10.1002/biot.200900197
|
[70]
|
Borges, N., Ramos, A., Raven, N.D., Sharp, R.J. and Santos, H. (2002) Comparative Study of the Thermostabilizing Properties of Mannosylglycerate and Other Compatible Solutes on Model Enzymes. Extremophiles, 6, 209-216. https://doi.org/10.1007/s007920100236
|
[71]
|
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111, 1-61.
|
[72]
|
Braune, W. and Sanke, H. (1979) Interferometric Studies of the Dynamics of Hydration and Dry Matter Content during Light-Dependent Germination of the Anabaena variabilis Kützing Akinetes. Zeitschrift fur Allgemeine Mikrobiologie, 19, 535-546. (In German with English Summary) https://doi.org/10.1002/jobm.3630190803
|
[73]
|
Potts, M. (1994) Desiccation Tolerance of Prokaryotes. Microbiological Reviews, 58, 755-805.
|
[74]
|
Sukenik, A., Kaplan-Levy, R.N., Viner-Mozzini, Y., Quesada, A. and Hadas, O. (2013) Potassium Deficiency Triggers the Development of Dormant Cells (Akinetes) in Aphanizomenon ovalisporum (Nostocales, Cyanoprokaryota). Journal of phycology, 49, 580-587. https://doi.org/10.1111/jpy.12069
|
[75]
|
Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J.S. and Arakawa, T. (2004) Role of Arginine in Protein Refolding, Solubilization, and Purification. Biotechnology Progress, 20, 1301-1308. https://doi.org/10.1021/bp0498793
|
[76]
|
Chi, E.Y., Krishnan, S., Randolph, T.W. and Carpenter, J.F. (2003) Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharmaceutical Research, 20, 1325-1336. https://doi.org/10.1023/A:1025771421906
|
[77]
|
Shiraki, K., Kudou, M., Fujiwara, S., Imanaka, T. and Takagi, M. (2002) Biophysical Effect of Amino Acids on the Prevention of Protein Aggregation. The Journal of Biochemistry, 132, 591-595. https://doi.org/10.1093/oxfordjournals.jbchem.a003261
|