[1]
|
Weiss, A.J. and Stoloff, I.L. (2015) Three Protocols Designed to Individualize and Maximize Anti-Cancer Drug Therapy. Journal of Cancer Therapy, 6, 1103-1113.
https://doi.org/10.4236/jct.2015.612120
|
[2]
|
Weiss, A.J. and Lackman R.D. (1997) Infusional Chemotherapy Combined with Hematopoetic Growth Factors Advantages and Limitations. American Journal of Clinical Oncology, 20, 63-66. https://doi.org/10.1097/00000421-199702000-00014
|
[3]
|
MacDonald, K.P., Munster, D.J., Clark, G.J., Dzionek, A., Schmitz, J. and Hart, D.N. (2002) Characterization of Human Blood Dendritic Cell Subsets. Blood, 100, 4512-4520. https://doi.org/10.1182/blood-2001-11-0097
|
[4]
|
Palucka, K. and Banchereau, J. (2012) Cancer Immunotherapy via Dendritic Cells. Nature Reviews Cancer, 12, 265-277. https://doi.org/10.1038/nrc3258
|
[5]
|
Nizzoli, G., Krietsch, J., Weick, A., Steinfelder, S., Facciotti, F., Gruarin, P., Bianco, A., Steckel, B., Moro, M., Crosti, M., et al. (2013) Human CD1c+ Dendritic Cells Secrete High Levels of IL-12 and Potently Prime Cytotoxic T-Cell Responses. Blood, 122, 932-942. https://doi.org/10.1182/blood-2013-04-495424
|
[6]
|
Breton, G., Lee, J., Zhou, Y.J., Schreiber, J.J., Keler, T., Puhr, S., Anandasabapathy, N., Schlesinger, S., Caskey, M., Liu, K. and Nussenzweig, M.C. (2015) Circulating Precursors of Human CD1c+ and CD141+ Dendritic Cells. Journal of Emergency Medicine, 212, 401. https://doi.org/10.1084/jem.20141441
|
[7]
|
Morse, E., Anderson, P. and Caligiuri, M.A. (1996) Caligiuri Role of Interleukin-15 in the Development of Human CD56+ Natural Killer Cells from CD34+ Hematopoietic Progenitor Cells. Blood, 87, 2632-2640.
|
[8]
|
Miller, J.S., McCullar, V., Punzel, M., Lemischka, I.R. and Moore, K.A. (1999) Single Adult Human CD34(+)/Lin-/CD38(-) Progenitors Give Rise to Natural Killer Cells, B-Lineage Cells, Dendritic Cells, and Myeloid Cells. Blood, 93, 96-106.
|
[9]
|
Frey, M., Packianathan, N.B., Fehniger, T.A., Ross, M.E., Wang, W.C., Stewart, C.C., Caligiuri, M.A. and Evans, S.S. (1998) Differential Expression and Function of L-Selectin on CD56bright and CD56dim Natural Killer Cell Subsets. The Journal of Immunology, 161, 400-408.
|
[10]
|
Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., Carson, W.E. and Caligiuri, M.A. (2001) Human Natural Killer Cells: A Unique Innate Immunoregulatory Role for the CD56 (Bright) Subset. Blood, 97, 3146-3151.
https://doi.org/10.1182/blood.V97.10.3146
|
[11]
|
Colucci, F., Caligiuri, M.A. and Di Santo, J.P. (2003) What Does It Take to Make a Natural Killer? Nature Reviews Immunology, 3, 413-425.
https://doi.org/10.1038/nri1088
|
[12]
|
Meropol, N.J., Miller, L.L., Korn E.L., Braitman, L.E., MacDermott M.L. and Schuchter, L.M. (1992) Severed Myelosuppression Resulting from Concurrent Administration of Granulocyte Colony-Stimulating Factor and Cytotoxic Chemotherapy. Journal of the National Cancer Institute, 84, 1201-1203.
https://doi.org/10.1093/jnci/84.15.1201
|
[13]
|
Rowinsky, E.K., et al. (1992) Phase I and Pharmacologic Study of Topotecan, an Inhibitor of Topoisomerase I with Granulocyte Colony-Stimulating (G-CSF) Toxicologic Differences between Concurrent and Post Treatment G-CSF Administration. Journal of Clinical Oncology, 11, 284.
|
[14]
|
Lokich, J. (1999) Single-Dose Granulocyte Colony-Stimulating Factor Concomitant with Multifractionated Dose Chemotherapy. A Strategy for Maintaining Dose Intensity Cancer Investigation, 17, 547-550.
https://doi.org/10.3109/07357909909032865
|
[15]
|
Müller, H.I., Nakchbandi, W., Chatzissavvidis, I. and Valek, V. (2001) Intra-Arterial Infusion of 5-Fluorouracil plus Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and Chemoembolization with Melphalan in the Treatment of Disseminated Colorectal Liver Metastases. European Journal of Surgical Oncology, 27, 652-661. https://doi.org/10.1053/ejso.2001.1193
|
[16]
|
Ottman, O.G., Hoelzer, D., Gracien, E., Ganser, A., Kelly, K., et al. (1995) Concomitant Granulocyte Colony-Stimulating Factor and Induction Chemoradiotherapyin Adult Acute Lymphoblastic Leukemia A randomized Phase Three Trial. Blood, 444-450.
|
[17]
|
Tessoulin, B., Thomare, P., Delande, E., Moynard, J., Gastinne, T., Moreau, A., Bossard, C., Mahé, B., Blin, N., Dubruille, V., Touzeau, C., Boudreault, J.S., Perrin, F., Lok, A., Guillaume, T., Garnier, A., Peterlin, P., Gallas, P., Chevallier, P. and Moreau, P. (2017) Carboplatin Instead of Cisplatin in Combination with Dexamethasone, High-Dose Cytarabine with or without Rituximab (DHAC+/-R) Is An Effective Treatment with Low Toxicity in Hodgkin’s and Non-Hodgkin’s Lymphoma. Annals of Hematology, 96, 943-950. https://doi.org/10.1007/s00277-017-2981-2
|
[18]
|
Weiss, A.J., Metter, G.E., Fletcher, W.S., Wilson, W.L., Grage, T.B. and Ramirez, G. (1976) Studies of Adriamycin Using a Weekly Regime Demonstrating Its Clinical Effectiveness and Lack of Cardiac Toxicity. Cancer Treatment Reports, 60, 813-822.
|
[19]
|
Starling, K.A., Berry, D.H., Britton, H.A., Humphrey, G.B., Vats, T. and Ragab, A.H. (1975) Three Dose Regimens of Adriamycin for Induction of Remission in Acute Leukemia in Children: A Southwest Oncology Group Study. Medical and Pediatric Oncology, 1, 271-276. https://doi.org/10.1002/mpo.2950010309
|
[20]
|
Berrak, S.G., Ewer, M.S., Jaffe, N., Pearson, P., Ried, H., Zietz, H.A. and Benjamin, R.S. (2001) Doxorubicin Cardiotoxicity in Children: Reduced Incidence of Cardiac Dysfunction Associated with Continuous-Infusion Schedules. Oncology Reports, 8, 611-614. https://doi.org/10.3892/or.8.3.611
|
[21]
|
Torti, F.M., Bristow, M.R., Howes, A.E., Aston, D., Stockdale, F.E., Carter, S.K., Kohler, M., Brown, B.W.J. and Billingham, M.E. (1983) Reduced Cardiotoxicity of Doxorubicin Delivered on a Weekly Schedule. Assessment by Endomyocardial Biopsy. Annals of Internal Medicine, 99, 745-749.
https://doi.org/10.7326/0003-4819-99-6-745
|
[22]
|
Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010) Granulocyte-Colony Stimulating Factor Promotes Lung Metastasis through Mobilization of Ly6G+Ly6C+ Granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107, 21248-21255.
https://doi.org/10.1073/pnas.1015855107
|
[23]
|
Wang, J., Yao, L., Zhao, S., Zhang, X., Yin, J., Zhang, Y., et al. (2012) Granulocyte-Colony Stimulating Factor Promotes Proliferation, Migration and Invasion in Glioma Cells. Cancer Biology & Therapy, 13, 389-400.
https://doi.org/10.4161/cbt.19237
|
[24]
|
Francis, S., Cheng, S., Arteaga, C. and Moslehi, J. (2004) Heart Failure and Breast Cancer Therapies: Moving towards Personalized Risk Assessment. Journal of the American Heart Association, 3, Article ID: e000780.
|
[25]
|
Force, T., Krause, D.S. and Van, E.R.A. (2007) Molecular Mechanisms of Cardiotoxicity of Tyrosine Kinase Inhibition. Nature Reviews Cancer, 7, 332-344.
https://doi.org/10.1038/nrc2106
|
[26]
|
Wing, E.J., Magee, D.M., Whiteside, T.L., Kaplan, S.S. and Shadduck, R.K. (1989) Recombinent Human Granulocyte/Macrophage Colony-Stimulating Factor Enhances Monocyte Cytotoxicity and Secretion of Tumor Necrosis Factor Alpha and Interferon in Cancer Patients. Blood, 73, 643-646.
|
[27]
|
Edmonson, J.H., Long, H.J., Kvols, L.K., Mann, B.S. and Grill, J.P. (1998) Can Molgramostim Enhance the Antitumor Effects of Cytotoxic Drugs in Patients with Advanced Sarcomas? Annals of Oncology, 8, 637-641.
https://doi.org/10.1023/A:1008292010062
|
[28]
|
Phillips, N., Jacobs, S., Stoller, R., Earle, M., Przepiorka, D. and Shadduck, R.K. (1989) Effect of Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor on Myelopoiesis in Patients with Refractory Metastatic Carcinoma. Blood, 74, 26-34.
|
[29]
|
Miguel, A., Herrero, M.J., Sendra, L., Botella, R., Algás, R., Sánchez, M. and Alino, S.F. (2013) Comparative Antitumor Effect among GM-CSF, IL-12 and GM-CSF+IL-12 Genetically Modified Tumor Cell Vaccines. Cancer Gene Therapy, 20, 576-578. https://doi.org/10.1038/cgt.2013.54
|
[30]
|
Sivori, S., Cantoni, C., Pasolini, E., Marcenaro, R., Conte, L. and Moretta, A. (2003) IL-21 Induces Both Rapid Maturation of Human CD34+ Cell Precursors towards NK Cells and Acquisition of Surface Killer Ig-Like Receptors. European Journal of Immunology, 33, 3439-3447. https://doi.org/10.1002/eji.200324533
|
[31]
|
Hiasa, M., Abe, M., Nakano, A., Oda, A., Amou, H., Kido, S., Takeuchi, K., Kagawa, K., Yata, K., Hashimoto, T., Ozaki, S., Asaoka, K., Tanaka, E., Moriyama, K. and Matsumoto, T. (2009) GM-CSF and IL-4 Induce Dendritic Cell Differentiation and Disrupt Osteoclastogenesis through M-CSF Receptorshedding by Up-Regulation of TNF-Alpha Converting Enzyme (TACE). Blood, 114, 4517-4526.
https://doi.org/10.1182/blood-2009-04-215020
|