[1]
|
Wu, Y.Y., Li, W., Xu, Y., Jin, E.H. and Tu, Y.Y. (2011) Evaluation of the Antioxidant Effects of Four Main Theaflavin Derivatives through Chemiluminescence and DNA Damage Analyses. Journal of Zhejiang University Science B, 12, 744.
https://doi.org/10.1631/jzus.B1100041
|
[2]
|
Yang, C.S., Wang, X., Lu, G. and Picinich, S.C. (2009) Cancer Prevention by Tea: Animal Studies, Molecular Mechanisms and Human Relevance. Nature Reviews Cancer, 9, 429-439. https://doi.org/10.1038/nrc2641
|
[3]
|
Balentine, D.A., Wiseman, S.A. and Bouwens, L.C. (1997) The Chemistry of Tea Flavonoids. Critical Reviews in Food Science & Nutrition, 37, 693-704.
https://doi.org/10.1080/10408399709527797
|
[4]
|
Miller, N.J., Castelluccio, C., Tijburg, L. and Rice-Evans, C. (1996) The Antioxidant Properties of Theaflavins and Their Gallate Esters—Radical Scavengers or Metal Chelators? FEBS Letters, 392, 40-44. https://doi.org/10.1016/0014-5793(96)00780-6
|
[5]
|
Sun, C.L., Yuan, J.M., Koh, W.P. and Mimi, C.Y. (2006) Green Tea, Black Tea and Breast Cancer Risk: A Meta-Analysis of Epidemiological Studies. Carcinogenesis, 27, 1310-1315. https://doi.org/10.1093/carcin/bgi276
|
[6]
|
George, J., Singh, M., Srivastava, A.K., Bhui, K., Roy, P., Chaturvedi, P.K. and Shukla, Y. (2011) Resveratrol and Black Tea Polyphenol Combination Synergistically Suppress Mouse Skin Tumors Growth by Inhibition of Activated MAPKs and p53. PLoS ONE, 6, e23395. https://doi.org/10.1371/journal.pone.0023395
|
[7]
|
Roy, P., Nigam, N., George, J., Srivastava, S. and Shukla, Y. (2009) Induction of Apoptosis by Tea Polyphenols Mediated through Mitochondrial Cell Death Pathway in Mouse Skin Tumors. Cancer Biology & Therapy, 8, 1281-1287.
https://doi.org/10.4161/cbt.8.13.8728
|
[8]
|
Egeblad, M. and Werb, Z. (2002) New Functions for the Matrix Metalloproteinases in Cancer Progression. Nature Reviews Cancer, 2, 161-174.
https://doi.org/10.1038/nrc745
|
[9]
|
Nagase, H., Visse, R. and Murphy, G. (2006) Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovascular Research, 69, 562-573.
https://doi.org/10.1016/j.cardiores.2005.12.002
|
[10]
|
Strongin, A.Y., Collier, I., Bannikov, G., Marmer, B.L., Grant, G.A. and Goldberg, G.I. (1995) Mechanism of Cell Surface Activation of 72-kDa Type IV Collagenase Isolation of the Activated Form of the Membrane Metalloprotease. Journal of Biological Chemistry, 270, 5331-5338. https://doi.org/10.1074/jbc.270.10.5331
|
[11]
|
Banerji, A., Chakrabarti, J., Mitra, A. and Chatterjee, A. (2005) Cell Membrane-Associated MT1-MMP-Dependent Activation of pro-MMP-2 in A375 Melanoma Cells. Journal of Environmental Pathology, Toxicology and Oncology, 24, 3-18. https://doi.org/10.1615/JEnvPathToxOncol.v24.i1.20
|
[12]
|
Kamiya, N., Kishimoto, T., Suzuki, H., Sekita, N., Nagai, Y., Oosumi, N., Kito, H., Tochigi, N., Shinbo, M., Nemori, R. and Ichikawa, T. (2003) Increased in Situ Gelatinolytic Activity in Renal Cell Tumor Tissues Correlates with Tumor Size, Grade and Vessel Invasion. International Journal of Cancer, 106, 480-485.
https://doi.org/10.1002/ijc.11272
|
[13]
|
Tester, A.M., Waltham, M., Oh, S.J., Bae, S.N., Bills, M.M., Walker, E.C., Kern, F.G., Stetler-Stevenson, W.G., Lippman, M.E. and Thompson, E.W. (2004) Pro-Matrix Metalloproteinase-2 Transfection Increases Orthotopic Primary Growth and Experimental Metastasis of MDA-MB-231 Human Breast Cancer Cells in Nude Mice. Cancer Research, 64, 652-658. https://doi.org/10.1158/0008-5472.CAN-0384-2
|
[14]
|
Yoon, S.O., Park, S.J., Yun, C.H. and Chung, A.S. (2003) Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis. Journal of Biochemistry and Molecular Biology, 36, 128-137.
|
[15]
|
Ann Beltz, L., Kay Bayer, D., Lynn Moss, A. and Mitchell Simet, I. (2006) Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 6, 389-406.
|
[16]
|
Sazuka, M., Imazawa, H., Shoji, Y., Mita, T., Hara, Y. and Isemura, M. (1997) Inhibition of Collagenases from Mouse Lung Carcinoma Cells by Green Tea Catechins and Black Tea Theaflavins. Bioscience, Biotechnology, and Biochemistry, 61, 1504-1506. https://doi.org/10.1271/bbb.61.1504
|
[17]
|
Sil, H., Sen, T., Moulik, S. and Chatterjee, A. (2010) Black Tea Polyphenol (Theaflavin) Downregulates MMP-2 in Human Melanoma Cell Line A375 by Involving Multiple Regulatory Molecules. Journal of Environmental Pathology, Toxicology and Oncology, 29, 55-68.
https://doi.org/10.1615/JEnvironPatholToxicolOncol.v29.i1.80
|
[18]
|
Herbst, R.S. (2004) Review of Epidermal Growth Factor Receptor Biology. International Journal of Radiation Oncology*Biology*Physics, 59, S21-S26.
https://doi.org/10.1016/j.ijrobp.2003.11.041
|
[19]
|
Olayioye, M.A., Neve, R.M., Lane, H.A. and Hynes, N.E. (2000) The ErbB Signaling Network: Receptor Heterodimerization in Development and Cancer. The EMBO Journal, 19, 3159-3167. https://doi.org/10.1093/emboj/19.13.3159
|
[20]
|
Seshacharyulu, P., Ponnusamy, M.P., Haridas, D., Jain, M., Ganti, A.K. and Batra, S.K. (2012) Targeting the EGFR Signaling Pathway in Cancer Therapy. Expert Opinion on Therapeutic Targets, 16, 15-31.
https://doi.org/10.1517/14728222.2011.648617
|
[21]
|
Mizuno, H., Cho, Y.Y., Zhu, F., Ma, W.Y., Bode, A.M., Yang, C.S., Ho, C.T. and Dong, Z. (2006) Theaflavin-3, 3’-Digallate Induces Epidermal Growth Factor Receptor Downregulation. Molecular carcinogenesis, 45, 204-212.
https://doi.org/10.1002/mc.20174
|
[22]
|
Juliano, R.L. (2002) Signal Transduction by Cell Adhesion Receptors and the Cytoskeleton: Functions of Integrins, Cadherins, Selectins, and Immunoglobulin-Superfamily Members. Annual Review of Pharmacology and Toxicology, 42, 283-323.
https://doi.org/10.1146/annurev.pharmtox.42.090401.151133
|
[23]
|
Jin, H. and Varner, J. (2004) Integrins: Roles in Cancer Development and as Treatment Targets. British Journal of Cancer, 90, 561-565.
https://doi.org/10.1038/sj.bjc.6601576
|
[24]
|
Liotta, L.A., Nageswara Rao, C. and Wewer, U.M. (1986) Biochemical Interactions of Tumor Cells with the Basement Membrane. Annual Review of Biochemistry, 55, 1037-1057. https://doi.org/10.1146/annurev.bi.55.070186.005133
|
[25]
|
Pasquier, E., Andre, N. and Braguer, D. (2007) Targeting Microtubules to inhIbit Angiogenesis and Disrupt Tumour Vasculature: Implications for Cancer Treatment. Current Cancer Drug Targets, 7, 566-581.
https://doi.org/10.2174/156800907781662266
|
[26]
|
Chakrabarty, S., Das, A., Bhattacharya, A. and Chakrabarti, G. (2011) Theaflavins Depolymerize Microtubule Network through Tubulin Binding and Cause Apoptosis of Cervical Carcinoma HeLa Cells. Journal of Agricultural and Food Chemistry, 59, 2040-2048. https://doi.org/10.1021/jf104231b
|
[27]
|
Sieg, D.J., Hauck, C.R., Ilic, D., Klingbeil, C.K., Schaefer, E., Damsky, C.H. and Schlaepfer, D.D. (2000) FAK Integrates Growth-Factor and Integrin Signals to Promote Cell Migration. Nature Cell Biology, 2, 249-256.
https://doi.org/10.1038/35010517
|
[28]
|
Sieg, D.J., Hauck, C.R. and Schlaepfer, D.D. (1999) Required Role of Focal Adhesion Kinase (FAK) for Integrin-Stimulated Cell Migration. Journal of Cell Science, 112, 2677-2691.
|
[29]
|
Weber, W.M., Hunsaker, L.A., Roybal, C.N., Bobrovnikova-Marjon, E.V., Abcouwer, S.F., Royer, R.E., Deck, L.M. and Vander Jagt, D.L. (2006) Activation of NFκB Is Inhibited by Curcumin and Related Enones. Bioorganic & Medicinal Chemistry, 14, 2450-2461.
|
[30]
|
Gosslau, A., Jao, E., Li, D., Huang, M.T., Ho, C.T., Evans, D., Rawson, N.E. and Chen, K.Y. (2011) Effects of the Black Tea Polyphenol Theaflavin-2 on Apoptotic and Inflammatory Pathways in Vitro and in Vivo. Molecular Nutrition & Food Research, 55, 198-208. https://doi.org/10.1002/mnfr.201000165
|
[31]
|
Kim, S. and Joo, Y.E. (2011) Theaflavin Inhibits LPS-Induced IL-6, MCP-1, and ICAM-1 Expression in Bone Marrow-Derived Macrophages through the Blockade of NF-κB and MAPK Signaling Pathways. Chonnam Medical Journal, 47, 104-110.
https://doi.org/10.4068/cmj.2011.47.2.104
|
[32]
|
Khan, N., Afaq, F. and Mukhtar, H. (2008) Cancer Chemoprevention through Dietary Antioxidants: Progress and Promise. Antioxidants & Redox Signaling, 10, 475-510. https://doi.org/10.1089/ars.2007.1740
|
[33]
|
Ukil, A., Maity, S. and Das, P.K. (2006) Protection from Experimental Colitis by Theaflavin-3,3’-Digallate Correlates with Inhibition of IKK and NF-κB Activation. British journal of Pharmacology, 149, 121-131.
https://doi.org/10.1038/sj.bjp.0706847
|
[34]
|
Chung, J.Y., Park, J.O., Phyu, H., Dong, Z. and Yang, C.S. (2001) Mechanisms of Inhibition of the Ras-MAP Kinase Signaling Pathway in 30.7 b Ras 12 Cells by Tea Polyphenols (-)-Epigallocatechin-3-Gallate and Theaflavin-3,3’-Digallate. The FASEB Journal, 15, 2022-2024.
|
[35]
|
Agarwal, M.L., Taylor, W.R., Chernov, M.V., Chernova, O.B. and Stark, G.R. (1998) The p53 Network. Journal of Biological Chemistry, 273, 1-4.
https://doi.org/10.1074/jbc.273.1.1
|
[36]
|
Kalra, N., Seth, K., Prasad, S., Singh, M., Pant, A.B. and Shukla, Y. (2007) Theaflavins Induced Apoptosis of LNCaP Cells Is Mediated through Induction of p53, Down-Regulation of NF-Kappa B and Mitogen-Activated Protein Kinases Pathways. Life Sciences, 80, 2137-2146.
|
[37]
|
Lahiry, L., Saha, B., Chakraborty, J., Bhattacharyya, S., Chattopadhyay, S., Banerjee, S., Choudhuri, T., Mandal, D., Bhattacharyya, A., Sa, G. and Das, T. (2008) Contribution of p53-Mediated Bax Transactivation in Theaflavin-Induced Mammary Epithelial Carcinoma Cell Apoptosis. Apoptosis, 13, 771-781.
https://doi.org/10.1007/s10495-008-0213-x
|
[38]
|
Kundu, T., Dey, S., Roy, M., Siddiqi, M. and Bhattacharya, R.K. (2005) Induction of Apoptosis in Human Leukemia Cells by Black Tea and Its Polyphenol Theaflavin. Cancer Letters, 230, 111-121. https://doi.org/10.1016/j.canlet.2004.12.035
|
[39]
|
Pal, S., Kumar Ganguly, K., Moulik, S. and Chatterjee, A. (2012) Modulation of MMPs by Cell Surface Integrin Receptor α5β1. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12, 726-732. https://doi.org/10.2174/187152012802650183
|
[40]
|
Murugan, R.S., Vinothini, G., Hara, Y. and Nagini, S. (2009) Black Tea Polyphenols Target Matrix Metalloproteinases, RECK, Proangiogenic Molecules and Histone Deacetylase in a Rat Hepatocarcinogenesis Model. Anticancer Research, 29, 2301-2305.
|
[41]
|
Hou, Z., Lambert, J.D., Chin, K.V. and Yang, C.S. (2004) Effects of Tea Polyphenols on Signal Transduction Pathways Related to Cancer Chemoprevention. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 555, 3-19.
|