[1]
|
Agarwal, P.K., Shukla, P.S., Gupta, K. and Jha, B. (2013) Bioengineering for Salinity Tolerance in Plants: State of the Art. Molecular Biotech, 54, 102-123. http://dx.doi.org/10.1007/s12033-012-9538-3
|
[2]
|
Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. and Lei, W. (2011) Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. African Journal of Agricultural Research, 6, 2026-2032.
|
[3]
|
Frary, A., Gol, D., Keles, D., Okmen, B., Pinar, H., Sigva, H., Yemenicioglu, A. and Doganlar, S. (2010) Salt Tolerance in Solanum pennellii: Antioxidant Response and Related QTL. BMC Plant Biology, 10, 58-59.
http://dx.doi.org/10.1186/1471-2229-10-58
|
[4]
|
Munns, R., James, R.A. and Lauchli, A. (2006) Approaches to Increasing the Salt Tolerance of Wheat and Other Cereals. Journal of Experimental Botany, 57, 1025-1043. http://dx.doi.org/10.1093/jxb/erj100
|
[5]
|
Jakab, G., Ton, J., Flors, V., Zimmerli, L., Métraux, J.P. and Mauch-Mani, B. (2005) Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Riming for Its Abscisic Acid Responses. Plant Physiology, 139, 67-74.
http://dx.doi.org/10.1104/pp.105.065698
|
[6]
|
Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.R. and Hansen, S. (2010) Effects of Irrigation Strategies and Soils on Field Grown Potatoes: Yield and Water Productivity. Agricultural Water Management, 97, 1923-1930. http://dx.doi.org/10.1016/j.agwat.2010.07.007
|
[7]
|
Fatma, M., Iqbal, M., Khan, R., Masood, A. and Khan, N.A. (2013) Coordinate Changes in Assimilatory Sulfate Reduction Is Correlated to Salt Tolerance: Involvement of Phytohormones. Annual Review & Research in Biology, 3, 267-295.
|
[8]
|
Tanaka, Y., Sugano, S.S., Shimada, T. and Hara Nishimura, I. (2013) Enhancement of Leaf Photosynthetic Capacity through Increased Stomatal Density in Arabidopsis. New Phytologist, 198, 757-764.
http://dx.doi.org/10.1111/nph.12186
|
[9]
|
López-Molina, L., Mongrand, S. and Chua, N.H. (2001) A Postgermination Developmental Arrest Checkpoint Is Mediated by Abscisic Acid and Requires the ABI5 Transcription Factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 98, 4782-4787. http://dx.doi.org/10.1073/pnas.081594298
|
[10]
|
Wasilewska, A., Vlad, F., Sirichandra, C., Redko, Y., Jammes, F., Valon, C., Freidit, F.N. and Leung, J. (2008) An Update on Abscisic Acid Signaling in Plants and More. Molecular Plant, 1, 198-217.
http://dx.doi.org/10.1093/mp/ssm022
|
[11]
|
Geng, Y., Wu, R., Wee, C.W., Xie, F., Wei, X., Chan, P.M., Tham, C., Duan, L. and Dinneny, J.R. (2013) A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis. Plant Cell, 25, 2132-2154. http://dx.doi.org/10.1105/tpc.113.112896
|
[12]
|
Waadt, R., Hitomi, K., Nishimura, N., Hitomi, C., Adams, S.R., Getzoff, E.D. and Schroeder, J.I. (2014) FRET-Based Reporters for the Direct Visualization of Abscisic Acid Concentration Changes and Distribution in Arabidopsis. eLife, 3, e01739. http://dx.doi.org/10.7554/elife.01739
|
[13]
|
Huang, D., Wu, W., Abrams, S.R. and Cutler, A.J. (2008) The Relationship of Drought-Related Gene Expression in Arabidopsis thaliana to Hormonal and Environmental Factors. Journal of Experimental Botany, 11, 2991-3007.
http://dx.doi.org/10.1093/jxb/ern155
|
[14]
|
Fernández, C., Alemano, S., Vigliocco, A., Andrade, A. and Abdala, G. (2012) Stress Hormone Levels Associated with Drought Tolerance vs. Sensitivity in Sunflower (Helianthus annuus L.). In: Nafees, K., Rahat, N., Noushina, I. and Naser, A., Eds., Phytohormones and Abiotic Stress Tolerance in Plants, Springer, Berlin, 249-276.
http://dx.doi.org/10.1007/978-3-642-25829-9_11
|
[15]
|
Aimar, D., Calafat, M., Andrade, A., Carassay, L., Bouteau, F., Abdala, G. and Molas, L. (2014) Drought Effects on the Early Development Stages of Panicum virgatum L.: Cultivar Differences. Biomass & Bioenergy, 66, 49-59.
http://dx.doi.org/10.1016/j.biombioe.2014.03.004
|
[16]
|
Cenzano, A.M., Masciarelli, O. and Luna, M.V. (2014) Abscisic Acid Metabolite Profiling as Indicators of Plastic Responses to Drought in Grasses from Arid Patagonian Monte (Argentina). Plant Physiology and Biochemistry, 83, 200-206. http://dx.doi.org/10.1016/j.plaphy.2014.07.024
|
[17]
|
He, T. and Cramer, G.R. (1996) Abscisic Acid Concentrations Are Correlated with Leaf Area Reductions in Two Salt-Stressed Rapid-Cycling Brassica Species. Plant and Soil, 179, 25-33. http://dx.doi.org/10.1007/BF00011639
|
[18]
|
Cabot, C., Sibole, J.V., Barcelo, J. and Poschenrieder, C. (2009) Abscisic Acid Decreases Leaf Na+ Exclusion in Salt-Treated Phaseolus vulgaris L. Plant Growth Regulation, 28, 187-192.
http://dx.doi.org/10.1007/s00344-009-9088-5
|
[19]
|
Cramer, G.R. and Quarrie, S.A. (2002) Abscisic Acid Is Correlated with the Leaf Growth Inhibition of Four Genotypes of Maize Differing in Their Response to Salinity. Functional Plant Biology, 29, 111-115.
http://dx.doi.org/10.1071/PP01131
|
[20]
|
Farhoudi, R. and Saeedipour, S. (2011) Effect of Exogenous Abscisic Acid on Antioxidant Activity and Salt Tolerance in Rapeseed (Brassica napus) Cultivars. Research on Crops, 12, 122-130.
|
[21]
|
Devinar, G., Llanes, A., Masciarelli, O. and Luna, V. (2013) Abscisic Acid and Salicylic Acid Levels Induced by Different Relative Humidity and Salinity Conditions in the Halophyte Prosopis strombulifera. Plant Growth Regulation, 70, 247-256. http://dx.doi.org/10.1007/s10725-013-9796-5
|
[22]
|
Llanes, A., Masciarelli, O., Ordonez, R., Isla, M.I. and Luna, V. (2014) Differential Growth Responses to Sodium Salts Involve Different ABA Catabolism and Transport in the Halophyte Prosopis strombulifera. Biologia Plantarum, 58, 80-88. http://dx.doi.org/10.1007/s10535-013-0365-6
|
[23]
|
Ali, S., Charles, T.C. and Glick, B.R. (2012) Delay of Flower Senescence by Bacterial Endophytes Expressing 1-Aminocyclopropane-1-Carboxylate Deaminase. Journal of Applied Microbiology, 113, 1139-1144.
http://dx.doi.org/10.1111/j.1365-2672.2012.05409.x
|
[24]
|
Leonard, R.T., Nell, T.A. and Hoyer, L. (2005) Response of Potted Rose Varieties to Short-Term Ethylene Exposure. In: van Meeteren, U., Marissen, N. and van Doorn, W.G., Eds., 8th International Symposium on Postharvest Physiology of Ornamental Plants, Doorwerth, 10 August 2003, 373-380. http://dx.doi.org/10.17660/ActaHortic.2005.669.49
|
[25]
|
Kun-Ming, C., Hai-Jun, G., Guo-Cang, C. and Cheng-Lie, Z. (2002) ACC and MACC Biosynthesis and Ethylene Production in Water-Stressed Spring Wheat. Acta Botanica Sinica, 44, 775-781.
|
[26]
|
Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G. and Yoneyama, K. (2011) Strigolactones Regulate Protonema Branching and Act as a Quorum Sensing-Like Signal in the Moss Physcomitrella patens. Development, 138, 1531-1539. http://dx.doi.org/10.1242/dev.058495
|
[27]
|
Jiang, C., Belfield, E.J., Cao, Y., Smith, J.A. and Harberd, N.P. (2013) An Arabidopsis Soil-Salinity-Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis. Plant Cell, 25, 3535-3552.
http://dx.doi.org/10.1105/tpc.113.115659
|
[28]
|
Sobeih, W.Y., Dodd, I.C., Bacon, M.A., Grierson, D. and Davies, W.J. (2004) Long-Distance Signals Regulating Stomatal Conductance and Leaf Growth in Tomato (Lycopersicon esculentum) Plants Subjected to Partial Root-Zone Drying. Journal of Experimental Botany, 55, 2353-2363. http://dx.doi.org/10.1093/jxb/erh204
|
[29]
|
Voisin, A.S., Reidy, B., Parent, B., Rolland, G., Redondo, E., Gerentes, D., Tardieu, F. and Muller, B. (2006) Are ABA, Ethylene or Their Interaction Involved in the Response of leaf Growth to Soil Water Deficit? An Analysis Using Naturally Occurring Variation or Genetic Transformation of ABA Production in Maize. Plant Cell and Environment, 29, 1829-1840. http://dx.doi.org/10.1111/j.1365-3040.2006.01560.x
|
[30]
|
Kang, D.J., Seo, Y.J., Lee, J.D., Ishii, R., Kim, K.U., Shin, D.H. and Lee, I.J. (2005) Jasmonic Acid Differentially Affects Growth, Ion Uptake and Abscisic Acid Concentration in Salt-Tolerant and Salt-Sensitive Rice Cultivars. Journal of Agronomy and Crop Science, 191, 273-282. http://dx.doi.org/10.1111/j.1439-037X.2005.00153.x
|
[31]
|
Creelman, R.A. and Mullet, J.E. (1995) Jasmonic Acid Distribution and Action in Plants: Regulation during Development and Response to Biotic and Abiotic Stress. Proceedings of the National Academy of Sciences, 92, 4114-4119.
http://dx.doi.org/10.1073/pnas.92.10.4114
|
[32]
|
Gapper, N.E., Norris, G.E., Clarke, S.F., Lill, R.E. and Jameson, P.E. (2002) Novel Jasmonate Amino Acid Conjugates in Asparagus officinalis during Harvest-Induced and Natural Foliar Senescence. Physiologia Plantarum, 114, 116-124.
http://dx.doi.org/10.1034/j.1399-3054.2002.1140116.x
|
[33]
|
Mahouachi, J., Arbona, V. and Gómez-Cadenas, A. (2007) Hormonal Changes in Papaya Seedlings Subjected to Progressive Water Stress and Re-Watering. Plant Growth Regulation, 53, 43-50.
http://dx.doi.org/10.1007/s10725-007-9202-2
|
[34]
|
Pedranzani, H., Sierra-de-Grado, R., Vigliocco, A., Miersch, O. and Abdala, G. (2007) Cold and Water Stresses Produce Changes in Endogenous Jasmonates in Two Populations of Pinus pinaster Ait. Plant Growth Regulation, 52, 111-116. http://dx.doi.org/10.1007/s10725-007-9166-2
|
[35]
|
Du, H., Liu, H. and Xiong, L. (2013) Endogenous Auxin and Jasmonic Acid Levels Are Differentially Modulated by Abiotic Stresses in Rice. Frontiers in Plant Science, 4, 389-397. http://dx.doi.org/10.3389/fpls.2013.00397
|
[36]
|
de Ollas, C., Hernando, B., Arbona, V. and Gómez-Cadenas, A. (2013) Jasmonic Acid Transient Accumulation Is Needed for Abscisic Acid Increase in Citrus Roots under Drought Stress Conditions. Physiologia Plantarum, 147, 296-306. http://dx.doi.org/10.1111/j.1399-3054.2012.01659.x
|
[37]
|
Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramírez, I., Pena-Cortés, H., Taleisnik, E., Machado-Domenech, E. and Abdala, G. (2003) Salt Tolerant Tomato Plants Show Increased Levels of Jasmonic Acid. Plant Growth Regulation, 41, 149-158. http://dx.doi.org/10.1023/A:1027311319940
|
[38]
|
Abdala, G., Miersch, O., Kramell, R., Vigliocco, A., Agostini, E., Forchetti, G. and Alemano, S. (2003) Jasmonate and Octadecanoid Occurrence in Tomato Hairy Roots. Endogenous Level Changes in Response to NaCl. Plant Growth Regulation, 40, 21-27. http://dx.doi.org/10.1023/A:1023016412454
|
[39]
|
Seltmann, M.A., Stingl, N.E., Lautenschlaeger, J.K., Krischke, M., Mueller, M.J. and Berger, S. (2010) Differential Impact of Lipoxygenase 2 and Jasmonates on Natural and Stress-Induced Senescence in Arabidopsis. Plant Physiology, 152, 1940-1950. http://dx.doi.org/10.1104/pp.110.153114
|
[40]
|
Kim, E.H., Kim, Y.S., Park, S.-H., Koo, Y.J., Choi, Y.D., Chung, Y.-Y., Lee, I.-J. and Kim, J.-K. (2009) Methyl Jasmonate Reduces Grain Yield by Mediating Stress Signals to Alter Spikelet Development in Rice. Plant Physiology, 149, 1751-1760. http://dx.doi.org/10.1104/pp.108.134684
|
[41]
|
Savchenko, T., Kolla, V.A., Wang, C.-Q., Nasafi, Z., Hicks, D.R., Phadungchob, B., Chehab, W.E., Brandizzi, F., Froehlich, J. and Dehesh, K. (2014) Functional Convergence of Oxylipin and Abscisic Acid Pathways Controls Stomatal Closure in Response To Drought. Plant Physiology, 164, 1151-1160. http://dx.doi.org/10.1104/pp.113.234310
|
[42]
|
Andrade, A., Vigliocco, A., Alemano, S., Miersch, O., Botella, M.A. and Abdala, G. (2005) Endogenous Jasmonates and Octadecanoids in Hypersensitive Tomato Mutants during Germination and Seedling Development in Response to Abiotic Stress. Seed Science Research, 15, 309-318. http://dx.doi.org/10.1079/SSR2005219
|
[43]
|
Reginato, M., Abdala, G., Miersch, O., Ruiz, O., Moschetti, E. and Luna, V. (2012) Changes in the Levels of Jasmonates and Free Polyamines Induced by Na2SO4 and NaCl in Roots and Leaves of the Halophyte Prosopis strombulifera. Biologia, 67, 689-697. http://dx.doi.org/10.2478/s11756-012-0052-7
|
[44]
|
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W. and Perez, A.C. (2010) NINJA Connects the Co-Repressor Topless to Jasmonate Signaling. Nature, 464, 788-791. http://dx.doi.org/10.1038/nature08854
|
[45]
|
Hayat, Q., Hayat, S., Irfan, M. and Ahmad, A. (2010) Effect of Exogenous Salicylic Acid under Changing Environment: A Review. Environmental and Experimental Botany, 68, 14-25.
http://dx.doi.org/10.1016/j.envexpbot.2009.08.005
|
[46]
|
Munné-Bosch, S. and Penuelas, J. (2003) Photo and Antioxidative Protection, and a Role for Salicylic Acid during Drought and Recovery in Field-Grown Phillyrea angustifolia Plants. Planta, 217, 758-766.
http://dx.doi.org/10.1007/s00425-003-1037-0
|
[47]
|
Hamayun, M., SohanSohan, E.Y., Khan, S.A. and Shinwari, Z.K. (2010) Silicon Alleviates the Adverse Effects of Salinity and Drought Stress on Growth and Endogenous Plant Growth Hormones of Soybean (Glycine max L.). Pakistan Journal of Botany, 42, 1713-1722.
|
[48]
|
Sawada, H., Shim, I.S. and Usui, K. (2006) Induction of Benzoic Acid 2-Hydroxylase and Salicylic Acid Biosynthesis Modulation by Salt Stress in Rice Seedlings. Plant Science, 171, 263-270.
http://dx.doi.org/10.1016/j.plantsci.2006.03.020
|
[49]
|
Bandurska, H. and Stroiński, A. (2005) The Effect of Salicylic Acid on Barley Response to Water Deficit. Acta Physiologiae Plantarum, 27, 379-386. http://dx.doi.org/10.1007/s11738-005-0015-5
|
[50]
|
Wang, Y., Mopper, S. and Hasenstein, K.H. (2001) Effects of Salinity on Endogenous Levels of ABA, IAA, JA, and SA in Iris hexagona. Journal of Chemical Ecology, 27, 327-342. http://dx.doi.org/10.1023/A:1005632506230
|
[51]
|
Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P.M. and Murata, Y. (2013) SIZ1 Deficiency Causes Reduced Stomatal Aperture and Enhanced Drought Tolerance via Controlling Salicylic Acid-Induced Accumulation of Reactive Oxygen Species in Arabidopsis. The Plant Journal, 73, 91-104.
http://dx.doi.org/10.1111/tpj.12014
|
[52]
|
Hao, L., Wang, Y., Xu, J., Feng, S.-D., Ma, C.-Y., Liu, C., Xu, X., Li, G.-Z. and Herbert, S.J. (2011) Role of endogenous Salicylic Acid in Arabidopsis Response to Elevated Sulfur Dioxide Concentration. Biologia Plantarum, 55, 297-304. http://dx.doi.org/10.1007/s10535-011-0042-6
|
[53]
|
Aharoni, N., Blumenfeld, A. and Richmond, A.E. (1977) Hormonal Activity Detached Lettuce Leaves as Affected by Leaf Water Content. Plant Physiology, 59, 1169-1173. http://dx.doi.org/10.1104/pp.59.6.1169
|
[54]
|
Rood, S.B., Zanewich, K., Stefura, C. and Mahoney, J.M. (2000) Influence of Water Table Decline on Growth Allocation and Endogenous Gibberellins in Black Cottonwood. Tree Physiology, 20, 831-836.
http://dx.doi.org/10.1093/treephys/20.12.831
|
[55]
|
Yang, J.C., Zhang, J.H., Wang, Z.Q., Zhu, Q.S. and Wang, W. (2001) Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling. Plant Physiology, 127, 315-323. http://dx.doi.org/10.1104/pp.127.1.315
|
[56]
|
Wang, L., Huang, Z., Baskin, C.C., Baskin, J.M. and Dong, M. (2008) Germination of Dimorphic Seeds of the Desert Annual Halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 Plant without Kranz Anatomy. Annals of Botany, 102, 757-769. http://dx.doi.org/10.1093/aob/mcn158
|
[57]
|
Abass, S. and Mohamed, H. (2011) Alleviation of Adverse Effects of Drought Stress on Common Bean (Phaseolus vulgaris L.) by Exogenous Application of Hydrogen Peroxide. Bangladesh Journal of Botany, 40, 75-83.
http://dx.doi.org/10.3329/bjb.v40i1.8001
|
[58]
|
Abdalla, M.M. (2011) Beneficial Effects of Diatomite on the Growth, the Biochemical Contents and Polymorphic DNA in Lupinus albus Plants Grown under Water Stress. Agriculture and Biology Journal of North America, 2, 207-220. http://dx.doi.org/10.5251/abjna.2011.2.2.207.220
|
[59]
|
Zawaski, C. and Busov, V.B. (2014) Roles of Gibberellin Catabolism and Signaling in Growth and Physiological Response to Drought and Short-Day Photoperiods in Populus trees. PLoS ONE, 20, 9-e862179.
http://dx.doi.org/10.1371/journal.pone.0086217
|
[60]
|
Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H. and Moritz, T. (2006) Integration of Plant Responses to Environmentally Activated Phytohormonal Signals. Science, 311, 91-94. http://dx.doi.org/10.1126/science.1118642
|
[61]
|
Iqbal N., Nazar R., Khan M.I.R., Masood A. and Khan N.A. (2011) Role of Gibberellins in Regulation of Source-Sink Relations under Optimal and Limiting Environmental Conditions. Current Science, 100, 998-1007.
|
[62]
|
Coupe, S.A., Palmer, B.G., Lake, J.A., Overy, S.A., Oxborough, K. and Woodward, F.I. (2006) Systemic Signalling of Environmental Cues in Arabidopsis Leaves. Journal of Experimental Botany, 57, 329-341.
http://dx.doi.org/10.1093/jxb/erj033
|
[63]
|
Xin, Z.Y., Zhou, X. and Pilet, P.E. (1997) Level Changes of Jasmonic, Abscisic, and Indole-3yl-Acetic Acids in Maize under Desiccation Stress. Journal of Plant Physiology, 151, 120-124.
http://dx.doi.org/10.1016/S0176-1617(97)80047-8
|
[64]
|
Masia, A., Pitacco, A., Braggio, L. and Giulivo, C. (1994) Hormonal Responses to Partial Drying of the Root System of Helianthus annuus L. Journal of Experimental Botany, 45, 69-76. http://dx.doi.org/10.1093/jxb/45.1.69
|
[65]
|
Dobra, J., Motyka, V., Dobrev, P., Malbeck, J., Prasil, I.T., Haisel, D. and Vankova, R. (2010) Comparison of Hormonal Responses to Heat, Drought and Combined Stress in Tobacco Plants with Elevated Proline Content. Journal of Plant Physiology, 167, 1360-1370. http://dx.doi.org/10.1016/j.jplph.2010.05.013
|
[66]
|
Xie, Z., Kasschau, K. and Carrington, J. (2003) Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA. Current Biology, 13, 784-789. http://dx.doi.org/10.1016/S0960-9822(03)00281-1
|
[67]
|
Man, H.M., Pollmann, S., Weiler, E.W. and Kirby, E.G. (2011) Increased Glutamine in Leaves of Poplar Transgenic with Pine GS1 a Caused Greater Anthranilate Synthetase Alpha-Subunit (ASA1) Transcript and Protein Bundances: An Auxin-Related Mechanism for Enhanced Growth in GS Transgenics? Journal of Experimental Botany, 62, 4423-4431. http://dx.doi.org/10.1093/jxb/err026
|
[68]
|
Zhang, H., Tan, G., Wang, Z., Yang, J. and Zhang, J. (2009) Ethylene and ACC Levels in Developing Grains Are Related to the Poor Appearance and Milling Quality of Rice. Plant Growth Regulation, 58, 85-96.
http://dx.doi.org/10.1007/s10725-008-9354-8
|
[69]
|
Kim, J., Patterson, S.E. and Binder, B.M. (2013) Reducing Jasmonic Acid Levels Causes Ein2 Mutants to Become Ethylene Responsive. FEBS Letters, 587, 226-230. http://dx.doi.org/10.1016/j.febslet.2012.11.030
|
[70]
|
Du, H., Liu, H. and Xiong, L. (2013) Endogenous Auxin and Jasmonic Acid Levels Are Differentially Modulated by Abiotic Stresses in Rice. Frontiers in Plant Science, 4, 389-397. http://dx.doi.org/10.3389/fpls.2013.00397
|
[71]
|
Wang, H., Liang, X., Wan, Q., Wang, X. and Bi, Y. (2009) Ethylene and Nitric Oxide Are Involved in Maintaining Ion Homeostasis in Arabidopsis callus under Salt Stress. Planta, 230, 293-307.
http://dx.doi.org/10.1007/s00425-009-0946-y
|
[72]
|
Javid, M.G., Sorooshzadeh, A., Moradi, F., Sanavy, S.A. and Allahdadi, I. (2011) The Role of Phytohormones in Alleviating Salt Stress in Crop Plants. Australian Journal of Crop Science, 5, 726-734.
|
[73]
|
Zorb, C., Geilfus, C.M., Mühling, K. and Ludwing-Müller, J. (2013) The Influence of Salt Stress on ABA and Auxin Concentrations in Two Maize Cultivars Differing in Salt Resistance. Journal of Plant Physiology, 170, 220-224.
http://dx.doi.org/10.1016/j.jplph.2012.09.012
|
[74]
|
Pospísilová, J. (2003) Participation of Phytohormones in the Stomatal Regulation of Gas Exchange during Water Stress. Biologia Plantarum, 46, 491-506. http://dx.doi.org/10.1023/A:1024894923865
|
[75]
|
Riefler, M., Novak, O., Strnad, M. and Schmulling, T. (2006) Arabidopsis Cytokinin Receptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed. Size, Germination, Root Development, and Cytokinin Metabolism. Plant Cell, 18, 40-54. http://dx.doi.org/10.1105/tpc.105.037796
|
[76]
|
Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D.T., Kojima, M., Werner, T., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., Kakimoto, T., Sakakibara, H., Schmülling, T. and Tran, L.S. (2011) Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis. Plant Cell, 23, 2169-2183.
http://dx.doi.org/10.1105/tpc.111.087395
|
[77]
|
Argueso, C.T., Ferreira, F.J. and Kieber, J.J. (2009) Environmental Perception Avenues: The Interaction of Cytokinin and Environmental Response Pathways. Plant, Cell & Environment, 32, 1147-160.
http://dx.doi.org/10.1111/j.1365-3040.2009.01940.x
|
[78]
|
Boucaud, J. and Ungar, I.A. (1976) Hormonal Control of Germination under Saline Conditions of Three Halophyte Taxa in Genus Suaeda. Plant Physiology, 36, 197-200.
|
[79]
|
Ghanem, M.E., Albacete, A. and Smigocki, A.C. (2011) Root-Synthesized Cytokinins Improve Shoot Growth and Fruit Yield in Salinized Tomato (Solanum lycopersicum L.) Plants. Journal of Experimental Botany, 62, 125-140.
http://dx.doi.org/10.1093/jxb/erq266
|
[80]
|
Macková, J., Vasková, M., Macek, P., Hronková, M., Schreiber, L. and Santrücek, J. (2013) Plant Response to Drought Stress Simulated by ABA Application: Changes in Chemical Composition of Cuticular Waxes. Environmental and Experimental Botany, 86, 70-75. http://dx.doi.org/10.1016/j.envexpbot.2010.06.005
|
[81]
|
Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.S. (2012) Benefits of Brassinosteroid Crosstalk. Trends in Plant Science, 17, 594-605. http://dx.doi.org/10.1016/j.tplants.2012.05.012
|
[82]
|
Divi, U., Rahman, T. and Krishna, P. (2010) Brassinosteroid-Mediated Stress Tolerance in Arabidopsis Shows Interactions with Abscisic Acid, Ethylene and Salicylic Acid Pathways. BMC Plant Biology, 10, 151-161.
http://dx.doi.org/10.1186/1471-2229-10-151
|
[83]
|
Schilling, G., Schiller, C. and Otto, S. (1991) Influence of Brassinosteroids on Organ Relation and Enzyme Activities of Sugar-Beet Plants. In: Cutler, H.G., Yokota, T. and Adam, G., Eds., Brassinosteroids: Chemistry, Bioactivity and Applications, American Chemical Society, Washington DC, 208-219. http://dx.doi.org/10.1021/bk-1991-0474.ch018
|
[84]
|
Vardhini, B.V. and Rao, S.S.R. (2003) Amelioration of Osmotic Stress by Brassinosteroids on Seed Germination and Seedling Growth of Three Varieties of Sorghum. Plant Growth Regulation, 41, 25-31.
http://dx.doi.org/10.1023/A:1027303518467
|
[85]
|
Upreti, K.K. and Murti, G.S. (2004) Effects of Brassinosteroids on Growth, Nodulation, Phytohormone Content and Nitrogenase Activity in French Bean under Water Stress. Biologia Plantarum, 48, 407-411.
http://dx.doi.org/10.1023/B:BIOP.0000041094.13342.1b
|
[86]
|
Farooq, M., Wahid, A., Basra, S.M.A. and Din, I.D. (2009) Improving Water Relations and Gas Exchange with Brassinosteroids in Rice under Drought Stress. Journal of Agronomy and Crop Science, 195, 262-269.
http://dx.doi.org/10.1111/j.1439-037X.2009.00368.x
|
[87]
|
Kagale, S., Divi, U.K., Krochko, J.E., Keller, W.A. and Krishna, P. (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353-364.
http://dx.doi.org/10.1007/s00425-006-0361-6
|
[88]
|
Hayat, S., Ali, B., Hassan, S.A. and Ahmad, A. (2007) Brassinosteroids Enhanced Antioxidantsunder Cadmium Stress in Brassica juncea. Environmental and Experimental Botany, 60, 33-41.
http://dx.doi.org/10.1016/j.envexpbot.2006.06.002
|
[89]
|
Hassan, W.M., Almaghraby, O.A. and Sakr, M.M. (2008) Effect of Sowing Dates and Vernalization on Beta vulgaris cv Univers Growth, Anatomy and Some Chemical Components of the Root. Agricultural Research Journal, Suez Canal University, 8, 41-47.
|
[90]
|
Shahbaz, M., Ashraf, M. and Athar, H.R. (2008) Does Exogenous Application of 24-Epibrassinolide Ameliorate Salt Induced Growth Inhibition in Wheat (Triticum aestivum L.)? Plant Growth Regulation, 55, 51-64.
http://dx.doi.org/10.1007/s10725-008-9262-y
|
[91]
|
Jager, C.E., Symons, G.M., Nomura, T., Yamada, Y., Smith, J.J., Yamaguchi, S., Kamiya, Y., Weller, J.L., Yokota, T. and Reid, J.B. (2008) Characterization of Two Brassinosteroid C-6 Oxidase Genes in Pea. Plant Physiology, 143, 1894-1904. http://dx.doi.org/10.1104/pp.106.093088
|
[92]
|
Xie, Z., Kasschau, K. and Carrington, J. (2003) Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA. Current Biology, 13, 784-789. http://dx.doi.org/10.1016/S0960-9822(03)00281-1
|
[93]
|
Van Ha, C., Leyva-González, M.A., Osakabe, Y., Tran, U.T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Yamaguchi, S., Dong, N.V., Yamaguchi-Shinozaki, K., Shinozaki, K., Estrella, L.H. and Phan Tran, L.S. (2013) Positive Regulatory Role of Strigolactone in Plant Responses to Drought and Salt Stress. Proceedings of the National Academy of Sciences of the United States of America, 111, 851-856. http://dx.doi.org/10.1073/pnas.1322135111
|
[94]
|
Czarnecki, O., Yang, J., Weston, D., Tuskan, G. and Chen, J. (2013) A Dual Role of Strigolactones in Phosphate Acquisition and Utilization in Plants. International Journal of Molecular Sciences, 14, 7681-7701.
http://dx.doi.org/10.3390/ijms14047681
|
[95]
|
Foo, E. and Reid, J.B. (2013) Strigolactones: New Physiological Roles for an Ancient Signal. Journal of Plant Growth Regulation, 32, 429-442. http://dx.doi.org/10.1007/s00344-012-9304-6
|
[96]
|
Siddiqui, M.H., Al-Whaibi, M.H. and Basalah, M.O. (2010) Role of Nitric Oxide in Tolerance of Plants to Abiotic Stress. Protoplasma, 248, 447-455. http://dx.doi.org/10.1007/s00709-010-0206-9
|
[97]
|
Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W.M., Dutilleul, C., Guillas, I., Zachowski, A. and Baudouin, E (2011) Nitric Oxide Participates in Cold-Responsive Phosphosphingo Lipid Formation and gene Expression in Arabidopsis thaliana. New Phytologist, 189, 415-427.
http://dx.doi.org/10.1111/j.1469-8137.2010.03500.x
|
[98]
|
Kolbert, Z., Bartha, B. and Erdei, L. (2005) Generation of Nitric Oxide in Roots of Pisum sativum, Triticum aestivum and Petroselinum crispum Plants under Osmotic and Drought Stress. Acta Biologica Szegediensis, 49, 13-16.
|
[99]
|
Tanou, G., Job, C., Rajjou, L., Arc, E., Belghzi, M., Diamantidis, G., Molassiotis, A. and Job, D. (2009) Proteomics Reveal the Overlapping Roles of Hydrogen Peroxide and Nitric Oxide in the Acclimation of Citrus Plants to Salinity. The Plant Journal, 60, 795-804. http://dx.doi.org/10.1111/j.1365-313X.2009.04000.x
|
[100]
|
Arasimowicz-Jelonek, M., Floryszak-Wieczorek, J. and Kubis, J. (2009) Involvement of Nitric Oxide in Water Stress-Induced Responses of Cucumber Roots. Plant Science, 177, 682-690.
http://dx.doi.org/10.1016/j.plantsci.2009.09.007
|
[101]
|
Shi, H., Ye, T., Zhu, J.K. and Chan, Z. (2014) Constitutive Production of Nitric Oxide Leads to Enhanced Drought Stress Resistance and Extensive Transcriptional Reprogramming in Arabidopsis. Journal of Experimental Botany, 65, 4119-4131. http://dx.doi.org/10.1093/jxb/eru184
|
[102]
|
Molassiotis, A., Tanou, G. and Diamantidis, G. (2010) NO Says More than ‘YES’ to Salt Tolerance: Salt Priming and Systemic Nitric Oxide Signaling in Plants. Plant Signaling and Behavior, 5, 209-212.
http://dx.doi.org/10.4161/psb.5.3.10738
|
[103]
|
Zhao, B., Liu, K., Zhang, H., Zhu, Q. and Yang, J. (2007) Causes of Poor Grain Plumpness of Two Line Hybrids and Their Relationships to the Contents of Hormones in Rice Grain. Agricultural Sciences in China, 6, 930-940.
http://dx.doi.org/10.1016/S1671-2927(07)60131-X
|