[1]
|
Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. and Egley, G.H. (1966) Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant. Science, 154, 1189-1190.
http://dx.doi.org/10.1126/science.154.3753.1189
|
[2]
|
Cook, C.E., Whichard, L.P., Wall, M.E., Egley, G.H., Coggon, P., Luhan, P.A. and McPhail, A.T. (1972) Germination Stimulants. II. Structure of Strigol, a Potent Seed Germination Stimulant for Witchweed (Striga lutea). Journal of the American Chemical Society, 94, 6198-6199. http://dx.doi.org/10.1021/ja00772a048
|
[3]
|
Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H. and Bouwmeester, H.J. (2005) The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche Spp. Are Derived from the Carotenoid Pathway. Plant Physiology, 139, 920-934. http://dx.doi.org/10.1104/pp.105.061382
|
[4]
|
Lopez-Raez, J.A., Charnikhova, T., Gomez-Roldan, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., Becard, G., Mulder, P. and Bouwmeester, H. (2008) Tomato Strigolactones Are Derived from Carotenoids and Their Biosynthesis Is Promoted by Phosphate Starvation. New Phytologist, 178, 863-874.
http://dx.doi.org/10.1111/j.1469-8137.2008.02406.x
|
[5]
|
Akiyama, K., Matsuzaki, K.-I. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature, 435, 824-827. http://dx.doi.org/10.1038/nature03608
|
[6]
|
Zheng, Z., Germain, A.D.S. and Chory, J. (2014) Unfolding the Mysteries of Strigolactone Signaling. Molecular Plant, 7, 934-936. http://dx.doi.org/10.1093/mp/ssu021
|
[7]
|
Waldie, T., McCulloch, H. and Leyser, O. (2014) Strigolactones and the Control of Plant Development: Lessons from Shoot Branching. The Plant Journal, 79, 607-622. http://dx.doi.org/10.1111/tpj.12488
|
[8]
|
Seto, Y. and Yamaguchi, S. (2014) Strigolactone Biosynthesis and Perception. Current Opinion in Plant Biology, 21, 1-6. http://dx.doi.org/10.1016/j.pbi.2014.06.001
|
[9]
|
Koltai, H. (2014) Receptors, Repressors, PINs: A Playground for Strigolactone Signaling. Trends in Plant Science, 19, 727-733. http://dx.doi.org/10.1016/j.tplants.2014.06.008
|
[10]
|
Bennett, T. and Leyser, O. (2014) Strigolactone Signalling: Standing on the Shoulders of DWARFs. Current Opinion in Plant Biology, 22, 7-13. http://dx.doi.org/10.1016/j.pbi.2014.08.001
|
[11]
|
Bonfante, P. and Genre, A. (2008) Plants and Arbuscular Mycorrhizal Fungi: An Evolutionary-Developmental Perspective. Trends in Plant Science, 13, 492-498. http://dx.doi.org/10.1016/j.tplants.2008.07.001
|
[12]
|
Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogué, F. and Rameau, C. (2011) Strigolactones Regulate Protonema Branching and Act as a Quorum Sensing-Like Signal in the Moss Physcomitrella patens. Development, 138, 1531-1539. http://dx.doi.org/10.1242/dev.058495
|
[13]
|
Delaux, P.-M., Xie, X., Timme, R.E., Puech-Pages, V., Dunand, C., Lecompte, E., Delwiche, C.F., Yoneyama, K., Bécard, G. and Séjalon-Delmas, N. (2012) Origin of Strigolactones in the Green Lineage. New Phytologist, 195, 857-871. http://dx.doi.org/10.1111/j.1469-8137.2012.04209.x
|
[14]
|
Wang, C., Liu, Y., Li, S.-S. and Han, G.-Z. (2015) Insights into the Origin and Evolution of the Plant Hormone Signaling Machinery. Plant Physiology, 167, 872-886. http://dx.doi.org/10.1104/pp.114.247403
|
[15]
|
Tsuchiya, Y. and McCourt, P. (2012) Strigolactones as Small Molecule Communicators. Molecular BioSystems, 8, 464-469. http://dx.doi.org/10.1039/C1MB05195D
|
[16]
|
Xie, X., Yoneyama, K. and Yoneyama, K. (2010) The Strigolactone Story. Annual Review of Phytopathology, 48, 93-117. http://dx.doi.org/10.1146/annurev-phyto-073009-114453
|
[17]
|
Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J. and Wang, Y. (2009) DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth. The Plant Cell, 21, 1512-1525. http://dx.doi.org/10.1105/tpc.109.065987
|
[18]
|
Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. (2012) The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 335, 1348- 1351. http://dx.doi.org/10.1126/science.1218094
|
[19]
|
Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R. and Klee, H.J. (2006) Characterization of Three Members of the Arabidopsis Carotenoid Cleavage Dioxygenase Family Demonstrates the Divergent Roles of This Multifunctional Enzyme Family. The Plant Journal, 45, 982-993. http://dx.doi.org/10.1111/j.1365-313X.2006.02666.x
|
[20]
|
Sorefan, K., Booker, J., Haurogné, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C. and Leyser, O. (2003) MAX4 and RMS1 Are Orthologous Dioxygenase-Like Genes That Regulate Shoot Branching in Arabidopsis and Pea. Genes & Development, 17, 1469-1474. http://dx.doi.org/10.1101/gad.256603
|
[21]
|
Turnbull, C.G.N., Booker, J.P. and Leyser, H.M.O. (2002) Micrografting Techniques for Testing Long-Distance Signalling in Arabidopsis. The Plant Journal, 32, 255-262. http://dx.doi.org/10.1046/j.1365-313X.2002.01419.x
|
[22]
|
Schwartz, S.H., Qin, X. and Loewen, M.C. (2004) The Biochemical Characterization of Two Carotenoid Cleavage Enzymes from Arabidopsis Indicates That a Carotenoid-Derived Compound Inhibits Lateral Branching. Journal of Biological Chemistry, 279, 46940-46945. http://dx.doi.org/10.1074/jbc.M409004200
|
[23]
|
Challis, R.J., Hepworth, J., Mouchel, C., Waites, R. and Leyser, O. (2013) A Role for More AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling Upstream of MAX2. Plant Physiology, 161, 1885-1902.
http://dx.doi.org/10.1104/pp.112.211383
|
[24]
|
Cardoso, C., Zhang, Y., Jamil, M., Hepworth, J., Charnikhova, T., Dimkpa, S.O.N., Meharg, C., Wright, M.H., Liu, J., Meng, X., Wang, Y., Li, J., McCouch, S.R., Leyser, O., Price, A.H., Bouwmeester, H.J. and Ruyter-Spira, C. (2014) Natural Variation of Rice Strigolactone Biosynthesis Is Associated with the Deletion of Two MAX1 Orthologs. Proceedings of the National Academy of Sciences of the United States of America, 111, 2379-2384.
http://dx.doi.org/10.1073/pnas.1317360111
|
[25]
|
Hamiaux, C., Drummond, R.S.M., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D. and Snowden, K.C. (2012) DAD2 Is an α/β Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, Strigolactone. Current Biology, 22, 2032-2036. http://dx.doi.org/10.1016/j.cub.2012.08.007
|
[26]
|
Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S. and Kyozuka, J. (2009) D14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant & Cell Physiology, 50, 1416-1424. http://dx.doi.org/10.1093/pcp/pcp091
|
[27]
|
Liu, W.Z., Wu, C., Fu, Y.P., Hu, G.C., Si, H.M., Zhu, L., Luan, W.J., He, Z.Q. and Sun, Z.X. (2009) Identification and Characterization of HTD2: A Novel Gene Negatively Regulating Tiller Bud Outgrowth in Rice. Planta, 230, 649-658.
http://dx.doi.org/10.1007/s00425-009-0975-6
|
[28]
|
Chevalier, F., Nieminen, K., Sánchez-Ferrero, J.C., Rodríguez, M.L., Chagoyen, M., Hardtke, C.S. and Cubas, P. (2014) Strigolactone Promotes Degradation of DWARF14, an α/β Hydrolase Essential for Strigolactone Signaling in Arabidopsis. The Plant Cell, 26, 1134-1150. http://dx.doi.org/10.1105/tpc.114.122903
|
[29]
|
Somers, D.E. and Fujiwara, S. (2009) Thinking Outside the F-Box: Novel Ligands for Novel Receptors. Trends in Plant Science, 14, 206-213. http://dx.doi.org/10.1016/j.tplants.2009.01.003
|
[30]
|
Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. (2012) Specialisation within the DWARF14 Protein Family Confers Distinct Responses to Karrikins and Strigolactones in Arabidopsis. Development, 139, 1285-1295. http://dx.doi.org/10.1242/dev.074567
|
[31]
|
Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J.B., Reinhardt, D., Bours, R., Bouwmeester, H.J. and Martinoia, E. (2012) A Petunia ABC Protein Controls Strigolactone-Dependent Symbiotic Signalling and Branching. Nature, 483, 341-344. http://dx.doi.org/10.1038/nature10873
|
[32]
|
de Saint Germain, A., Bonhomme, S., Boyer, F.-D. and Rameau, C. (2013) Novel Insights into Strigolactone Distribution and Signalling. Current Opinion in Plant Biology, 16, 583-589. http://dx.doi.org/10.1016/j.pbi.2013.06.007
|
[33]
|
Liu, Q., Zhang, Y., Matusova, R., Charnikhova, T., Amini, M., Jamil, M., Fernandez-Aparicio, M., Huang, K., Timko, M.P., Westwood, J.H., Ruyter-Spira, C., van der Krol, S. and Bouwmeester, H.J. (2014) Striga hermonthica MAX2 Restores Branching but Not the Very Low Fluence Response in the Arabidopsis thaliana MAX2 Mutant. New Phytologist, 202, 531-541. http://dx.doi.org/10.1111/nph.12692
|
[34]
|
Westwood, J.H., dePamphilis, C.W., Das, M., Fernandez-Aparicio, M., Honaas, L.A., Timko, M.P., Wafula, E.K., Wickett, N.J. and Yoder, J.I. (2012) The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Science, 60, 295-306. http://dx.doi.org/10.1614/WS-D-11-00113.1
|
[35]
|
Westwood, J.H. (2000) Characterization of the Orobanche-Arabidopsis System for Studying Parasite-Host Interactions. Weed Science, 48, 742-748. http://dx.doi.org/10.1614/0043-1745(2000)048[0742:COTOAS]2.0.CO;2
|
[36]
|
Gurney, A.L., Grimanelli, D., Kanampiu, F., Hoisington, D., Scholes, J.D. and Press, M.C. (2003) Novel Sources of Resistance to Striga hermonthica in Tripsacum dactyloides, a Wild Relative of Maize. New Phytologist, 160, 557-568.
http://dx.doi.org/10.1046/j.1469-8137.2003.00904.x
|
[37]
|
Lynn, D.G. and Chang, M. (1990) Phenolic Signals in Cohabitation: Implications for Plant Development. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 497-526.
http://dx.doi.org/10.1146/annurev.pp.41.060190.002433
|
[38]
|
Gurney, A.L., Slate, J., Press, M.C. and Scholes, J.D. (2006) A Novel form of Resistance in Rice to the Angiosperm Parasite Striga hermonthica. New Phytologist, 169, 199-208. http://dx.doi.org/10.1111/j.1469-8137.2005.01560.x
|
[39]
|
Young, N.D. and dePamphilis, C.W. (2005) Rate Variation in Parasitic Plants: Correlated and Uncorrelated Patterns among Plastid Genes of Different Function. BMC Evolutionary Biology, 5, 16.
http://dx.doi.org/10.1186/1471-2148-5-16
|
[40]
|
McNeal, J.R., Bennett, J.R., Wolfe, A.D. and Mathews, S. (2013) Phylogeny and Origins of Holoparasitism in Orobanchaceae. American Journal of Botany, 100, 971-983. http://dx.doi.org/10.3732/ajb.1200448
|
[41]
|
Li, L., Stoeckert Jr., C.-J. and Roos, D.-S. (2003) Orthomcl: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13, 2178-2189. http://dx.doi.org/10.1101/gr.1224503
|
[42]
|
Wall, P.K., Leebens-Mack, J., Müller, K.F., Field, D., Altman, N.S. and dePamphilis, C.W. (2008) PlantTribes: A Gene and Gene Family Resource for Comparative Genomics in Plants. Nucleic Acids Research, 36, D970-D976.
http://dx.doi.org/10.1093/nar/gkm972
|
[43]
|
McGinnis, S. and Madden, T.L. (2004) BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Research, 32, W20-W25. http://dx.doi.org/10.1093/nar/gkh435
|
[44]
|
Eddy, S.R. (2011) Accelerated Profile HMM Searches. PLoS Computational Biology, 7, e1002195.
http://dx.doi.org/10.1371/journal.pcbi.1002195
|
[45]
|
Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780. http://dx.doi.org/10.1093/molbev/mst010
|
[46]
|
Capella-Gutiérrez, S., Silla-Martínez, J.M. and Gabaldón, T. (2009) trimAL: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics, 25, 1972-1973.
http://dx.doi.org/10.1093/bioinformatics/btp348
|
[47]
|
Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics, 22, 2688-2690. http://dx.doi.org/10.1093/bioinformatics/btl446
|
[48]
|
Yang, Z. (1997) PAML: A Program Package for Phylogenetic Analysis by Maximum Likelihood. Computer Applications in the Biosciences, 13, 555-556. http://dx.doi.org/10.1093/bioinformatics/13.5.555
|
[49]
|
Yang, Z. (2007) PAML4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evololution, 24, 1586-1591. http://dx.doi.org/10.1093/molbev/msm088
|
[50]
|
González-Verdejo, C.I., Die, J.V., Nadal, S., Jiménez-Marín, A., Moreno, M.T. and Román, B. (2008) Selection of Housekeeping Genes for Normalization by Real-Time RT-PCR: Analysis of Or-MYB1 Gene Expression in Orobanche ramosa Development. Analytical Biochemistry, 379, 176-181. http://dx.doi.org/10.1016/j.ab.2008.05.003
|
[51]
|
Fernández-Aparicio, M., Rubiales, D., Bandaranayake, P., Yoder, J. and Westwood, J. (2011) Transformation and Regeneration of the Holoparasitic Plant Phelipanche aegyptiaca. Plant Methods, 7, 36.
http://dx.doi.org/10.1186/1746-4811-7-36
|
[52]
|
Fernández-Aparicio, M., Huang, K., Wafula, E.K., Honaas, L.A., Wickett, N.J., Timko, M.P., dePamphilis, C.W., Yoder, J.I. and Westwood, J.H. (2013) Application of qRT-PCR and RNA-Seq Analysis for the Identification of Housekeeping Genes Useful for Normalization of Gene Expression Values During Striga hermonthica Development. Molecular Biology Reports, 40, 3395-3407. http://dx.doi.org/10.1007/s11033-012-2417-y
|
[53]
|
Westwood, J.H. and Foy, C.L. (1999) Influence of Nitrogen on Germination and Early Development of Broomrape (Orobanche Spp.). Weed Science, 47, 2-7.
|
[54]
|
Péron, T., Véronési, C., Mortreau, E., Pouvreau, J.-B., Thoiron, S., Leduc, N., Delavault, P. and Simier, P. (2012) Role of the Sucrose Synthase Encoding PrSus1 Gene in the Development of the Parasitic Plant Phelipanche ramosa L. (Pomel). Molecular Plant-Microbe Interactions, 25, 402-411. http://dx.doi.org/10.1094/MPMI-10-11-0260
|
[55]
|
Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
|
[56]
|
Messing, S.A.J., Gabelli, S.B., Echeverria, I., Vogel, J.T., Guan, J.C., Tan, B.C., Klee, H.J., McCarty, D.R. and Amzel, L.M. (2010) Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. The Plant Cell, 22, 2970-2980. http://dx.doi.org/10.1105/tpc.110.074815
|
[57]
|
van den Brule, S. and Smart, C.C. (2002) The Plant PDR Family of ABC Transporters. Planta, 216, 95-106.
http://dx.doi.org/10.1007/s00425-002-0889-z
|
[58]
|
Dun, E.A., Brewer, P.B. and Beveridge, C.A. (2009) Strigolactones: Discovery of the Elusive Shoot Branching Hormone. Trends in Plant Science, 14, 364-372. http://dx.doi.org/10.1016/j.tplants.2009.04.003
|
[59]
|
Johnson, X., Brcich, T., Dun, E.A., Goussot, M., Haurogné, K., Beveridge, C.A. and Rameau, C. (2006) Branching Genes Are Conserved across Species. Genes Controlling a Novel Signal in Pea Are Coregulated by Other Long-Distance Signals. Plant Physiology, 142, 1014-1026. http://dx.doi.org/10.1104/pp.106.087676
|
[60]
|
Dun, E.A., de Saint Germain, A., Rameau, C. and Beveridge, C.A. (2013) Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum. Molecular Plant, 6, 128-140. http://dx.doi.org/10.1093/mp/sss131
|
[61]
|
Evidente, A., Fernandez-Aparicio, M., Cimmino, A., Rubiales, D., Andolfi, A. and Motta, A. (2009) Peagol and Peagoldione, Two New Strigolactone-Like Metabolites Isolated from Pea Root Exudates. Tetrahedron Letters, 50, 6955-6958. http://dx.doi.org/10.1016/j.tetlet.2009.09.142
|
[62]
|
Evidente, A., Cimmino, A., Fernández-Aparicio, M., Rubiales, D., Andolfi, A. and Melck, D. (2011) Soyasapogenol B and Trans-22-Dehydrocam-Pesterol from Common Vetch (Vicia sativa L.) Root Exudates Stimulate Broomrape Seed Germination. Pest Management Science, 67, 1015-1022. http://dx.doi.org/10.1002/ps.2153
|
[63]
|
Evidente, A., Cimmino, A., Fernandez-Aparicio, M., Andolfi, A., Rubiales, D. and Motta, A. (2010) Polyphenols, Including the New Peapolyphenols A-C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. Journal of Agricultural and Food Chemistry, 58, 2902-2907. http://dx.doi.org/10.1021/jf904247k
|
[64]
|
Yoneyama, K., Yoneyama, K., Takeuchi, Y. and Sekimoto, H. (2007) Phosphorus Deficiency in Red Clover Promotes Exudation of Orobanchol, the Signal for Mycorrhizal Symbionts and Germination Stimulant for Root Parasites. Planta, 225, 1031-1038. http://dx.doi.org/10.1007/s00425-006-0410-1
|
[65]
|
Harrison, M.J. (2005) Signaling in the Arbuscular Mycorrhizal Symbiosis. Annual Review of Microbiology, 59, 19-42.
http://dx.doi.org/10.1146/annurev.micro.58.030603.123749
|
[66]
|
Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.-P., Letisse, F., Matusova, R., Danoun, S., Portais, J.-C., Bouwmeester, H., Becard, G., Beveridge, C.A., Rameau, C. and Rochange, S.F. (2008) Strigolactone Inhibition of Shoot Branching. Nature, 455, 189-194. http://dx.doi.org/10.1038/nature07271
|
[67]
|
Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of Shoot Branching by New Terpenoid Plant Hormones. Nature, 455, 195-200. http://dx.doi.org/10.1038/nature07272
|
[68]
|
Leyser, O. (2009) The Control of Shoot Branching: An Example of Plant Information Processing. Plant, Cell & Environment, 32, 694-703. http://dx.doi.org/10.1111/j.1365-3040.2009.01930.x
|
[69]
|
Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H. and Ruyter-Spira, C. (2011) Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis. Plant Physiology, 155, 974-987. http://dx.doi.org/10.1104/pp.110.164640
|
[70]
|
Irving, L.J. and Cameron, D.D. (2009) Chapter 3 You Are What You Eat: Interactions between Root Parasitic Plants and Their Hosts. Advances in Botanical Research, 50, 87-138. http://dx.doi.org/10.1016/S0065-2296(08)00803-3
|
[71]
|
dePamphilis, C. and Palmer, J. (1990) Loss of Photosynthetic and Chlororespiratory Genes from the Plastid Genome of a Parasitic Flowering Plant. Nature, 348, 337-339. http://dx.doi.org/10.1038/348337a0
|
[72]
|
Wickett, N.J., Honaas, L.A., Wafula, E.K., Das, M., Huang, K., Wu, B., Landherr, L., Timko, M.P., Yoder, J., Westwood, J.H. and dePamphilis, C.W. (2011) Transcriptomes of the Parasitic Plant Family Orobanchaceae Reveal Surprising Conservation of Chlorophyll Synthesis. Current Biology, 21, 2098-2104.
http://dx.doi.org/10.1016/j.cub.2011.11.011
|
[73]
|
Plakhine, D., Tadmor, Y., Ziadne, H. and Joel, D.M. (2012) Maternal Tissue Is Involved in Stimulant Reception by Seeds of the Parasitic Plant Orobanche. Annals of Botany, 109, 979-986. http://dx.doi.org/10.1093/aob/mcs016
|
[74]
|
Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Hayashi, H. and Yoneyama, K. (2008) Strigolactones, Host Recognition Signals for Root Parasitic Plants and Arbuscular Mycorrhizal Fungi, from Fabaceae Plants. New Phytologist, 179, 484-494. http://dx.doi.org/10.1111/j.1469-8137.2008.02462.x
|
[75]
|
Yoneyama, K., Ruyter-Spira, C. and Bouwmeester, H. (2013) Induction of Germination. In: Joel, D.M., Gressel, J. and Musselman, L.J., Ed., Parasitic Orobanchaceae, Springer, Berlin Heidelberg, 167-194.
http://dx.doi.org/10.1007/978-3-642-38146-1_10
|
[76]
|
Fernandez-Aparicio, M., Flores, F. and Rubiales, D. (2009) Recognition of Root Exudates by Seeds of Broomrape (Orobanche and Phelipanche) Species. Annals of Botany, 103, 423-431. http://dx.doi.org/10.1093/aob/mcn236
|
[77]
|
Fernández-Aparicio, M., Pérez-de-Luque, A., Prats, E. and Rubiales, D. (2008) Variability of Interactions between Barrel Medic (Medicago truncatula) Genotypes and Orobanche Species. Annals of Applied Biology, 153, 117-126.
http://dx.doi.org/10.1111/j.1744-7348.2008.00241.x
|