[1]
|
Neumann, P.M. (1995) Inhibition of Root Growth by Salinity Stress: Toxicity or an Adaptive Biophysical Response? In: Baluska, F., Ciamporova, M. and Gasparikova, O., Eds., Structure and Function of Roots, Kluwer Academic Publishers, 299-304.
|
[2]
|
Yildirim, E., Dursun, A., Guvenc, I. and Kumlay, A. (2002) The Effects of Different Salt, Biostimulant and Temperature Levels on Seed Germination of Some Vegetable Species. Acta Agrobotanica, 55, 75-80.
http://dx.doi.org/10.5586/aa.2002.045
|
[3]
|
Khajeh-Hosseini, M., Powell, A.A. and Bingham, I.J. (2003) The Interaction between Salinity Stress and Seed Vigour during Germination of Soybean Seeds. Seed Sciences Technology, 31, 715-725.
http://dx.doi.org/10.15258/sst.2003.31.3.20
|
[4]
|
Almansouri, M., Kinet, J.M. and Lutts, S. (2001). Effect of Salt and Osmotic Stresses on Germination in Durum Wheat (Triticum durum Desf.). Plant and Soil, 231, 243-254. http://dx.doi.org/10.1023/A:1010378409663
|
[5]
|
Baldwin, A.H., McKee, K.L. and Mendelssohn, I.A. (1996) The Influence of Vegetation, Salinity, and Inundation on Seed Banks of Oligohaline Coastal Marshes. American Journal Botany, 83, 470-479.
http://dx.doi.org/10.2307/2446216
|
[6]
|
Ungar, I. (1996) Effect of Salinity on Seed Germination, Growth, and Ion Accumulation of Atriplex patula Chenopodiaceae. American Journal of Botany, 83, 604-607. http://dx.doi.org/10.2307/2445919
|
[7]
|
Hampson, C. and Simpson, G. (1990) Effects of Temperature, Salt, and Osmotic Potential on Early Growth of Wheat Triticum aestivum. I. Germination. Canadian Journal of Botany, 68, 524-528. http://dx.doi.org/10.1139/b90-072
|
[8]
|
Shannon, M.C. and Grieve, C.M. (1999) Tolerance of Vegetable Crops to Salinity. Scientia Horticulturae, 78, 5-38.
http://dx.doi.org/10.1016/S0304-4238(98)00189-7
|
[9]
|
Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to Environmental Stresses. The Plant Cell, 7, 1099-1111. http://dx.doi.org/10.1105/tpc.7.7.1099
|
[10]
|
Yan, X., Liao, H., Trull, M.C., Beebe, S.E. and Lynch, J.P. (2001) Induction of Major Leaf Acid Phosphatase Does Not Confer Adaptation to Low Phosphorus Avaibility. Plant Physiology, 125, 1901-1911.
http://dx.doi.org/10.1104/pp.125.4.1901
|
[11]
|
Ehsanpour, A.A. and Amini, F. (2003) Effect of Salt and Drought Stress on Acid Phosphatase Activities in Alfalfa Medicago sativa L. Explants under in Vitro Culture. African Journal of Biotechnology, 2, 133-135.
|
[12]
|
Hoehamer, C.F., Mazur, C.S. and Wolfe, N.L. (2005) Purification and Partial Characterization of an Acid Phosphatase from Spirodela oligorrhiza and Its Affinity for Selected Organophosphate Pesticides. Journal of Agricultural and Food Chemistry, 53, 90-97. http://dx.doi.org/10.1021/jf040329u
|
[13]
|
Olmos, E. and Hellin, E. (1997) Cytochemical Localization of ATPase Plasma Membrane and Acid Phosphatase by Cerium Based in a Salt-Adapted Cell Line of Pisum sativum. Journal of Experimental Botany, 48, 1529-1535.
http://dx.doi.org/10.1093/jxb/48.8.1529
|
[14]
|
Nasri, N., Kaddour, R., Rabhi, M., Plassard, C. and Lachaal, M. (2011) Effect of Salinity on Germination, Phytase Activity and Phytate Content in Lettuce Seedling. Acta Physiologiae Plantarum, 33, 935-942.
http://dx.doi.org/10.1007/s11738-010-0625-4
|
[15]
|
Rubio-Casal, A.E., Castillo, J.M., Luque, C.J. and Figueroa, M.E. (2003) Influence of Salinity on Germination and Seeds Viability of Two Primary Colonizers of Mediterranean Salt Pans. Journal of Arid Environments, 53, 145-154.
http://dx.doi.org/10.1006/jare.2002.1042
|
[16]
|
Saluja, D., Mihra, S., Lall, S. and Sachar, R.C. (1989) Regulation of Acid Phosphatase by Gibberellic Acid in Embryo-Less Half-Seeds of Wheat. Plant Science, 62, 1-9. http://dx.doi.org/10.1016/0168-9452(89)90182-9
|
[17]
|
Nasri, N., Kaddour, R., Mahmoudi, H., Baatour, O., Bouraoui, N. and Lachaal, M. (2011) The Effect of Osmopriming on Germination, Seedling Growth and Phosphatase Activities of Lettuce under Saline Condition. African Journal of Biotechnology, 10, 14366-14372.
|
[18]
|
Jeannette, S., Craig, R. and Iynch, J.P. (2002) Salinity Tolerance of Phaseolus Species during Germination and Early Seedling Growth. Crop Science, 42, 1584-1594. http://dx.doi.org/10.2135/cropsci2002.1584
|
[19]
|
Datta, J.K., Nag, S., Banerjee, A. and Mondal, N.K. (2009) Impact of Salt Stress on Five Varieties of Wheat Triticum aestivum L. Cultivars under Laboratory Condition. Journal of Applied Sciences and Environmental Management, 13, 93-97.
|
[20]
|
Gholamin, R. and Khayatnezhad, M. (2010) Effects of Polyethylene Glycol and NaCl Stress on Two Cultivars of Wheat Triticum durum at Germination and Early Seeding Stages. American-Eurasian Journal of Agricultural and Environmental Sciences, 9, 86-90.
|
[21]
|
Mostafavi, K. (2011) An Evaluation of Safflower Genotypes Carthamus tinctorius L. Seed Germination and Seedling Characters in Salt Stress Conditions. African Journal of Agricultural Research, 6, 1667-1672.
|
[22]
|
Yildirim, E., Karlidag, H. and Dursun, A. (2011) Salt Tolerance of Physalis during Germination and Seedling Growth. Pakistan Journal of Botany, 43, 2673-2676.
|
[23]
|
Gill, P.K., Sharma, A.D., Singh, P. and Bhullar, S.S. (2003) Changes in Germination, Growth and Soluble Sugar Contents of Sorghum bicolor L. Moench Seeds under Various Abiotic Stresses. Plant Growth Regulation, 40, 157-162.
http://dx.doi.org/10.1023/A:1024252222376
|
[24]
|
Nasr, S.M.H., Parsakhoo, A., Skandari, S., Gojani, H.J. and Koohi, S.K.S. (2012) Investigation of Salinity Tolerance in Dodonaea viscosa L. Journal of Applied Biological Sciences, 6, 31-36.
|
[25]
|
Ashraf, M. and Waheed, A. (1993) Responses of Some Local/Exotic Accessions of Lentil (Lens culinaris Medic.) to Salt Stress. Journal of Agronomy and Crop Science, 170, 103-112.
http://dx.doi.org/10.1111/j.1439-037X.1993.tb01063.x
|
[26]
|
Akbarimoghaddam, H., Galavi, M., Ghanbari, A. and Panjehkeh, N. (2011) Salinity Effects on Seed Germination and Seedling Growth of Bread Wheat Cultivars. Trakia Journal of Sciences, 9, 43-50.
|
[27]
|
El Naim, A.M., Khawla, E.M., Ibrahim, E.A. and Suleiman, N.N. (2012) Impact of Salinity on Seed Germination and Early Seedling Growth of three Sorghum (Sorghum biolor L. Moench) Cultivars. Journal of Science and Technology, 2, 16-20.
|
[28]
|
Jain, A., Sharma, A.D. and Singh, K. (2004) Plant Growth Hormones and Salt Stress-Mediated Changes in Acid and Alkaline Phosphatase Activities in the Pearl Millet Seeds. International Journal of Agriculture and Biology, 6, 960- 963.
|
[29]
|
Sharma, A.D., Thakur, M., Rana, M. and Singh, K. (2004) Effect of Plant Growth Hormones and Abiotic Stresses on Germination, Growth and Phosphatase Activities in Sorghum bicolor L. Moench Seeds. African Journal of Biotechnology, 3, 308-312.
|
[30]
|
Fincher, G.B. (1989) Molecular and Cellular Biology Association with Endosperm Mobilization in Germination Cereal Grains. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 305-346.
http://dx.doi.org/10.1146/annurev.pp.40.060189.001513
|
[31]
|
Dubey, R.S. and Sharma, K.N. (1990) Behaviour of Phosphatases in Germinating Rice in Relation to Salt Tolerance. Plant Physiology and Biochemistry, 28, 17-26.
|