[1]
|
Bornscheuer, U.T. (2002) Microbial Carboxyl Esterases: Classification, Properties and Application in Biocatalysis. FEMS Microbiology Reviews, 26, 73-81. http://dx.doi.org/10.1111/j.1574-6976.2002.tb00599.x
|
[2]
|
Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, I., Gentry, M.K. and Doctor, B.P. (1993) Relationship between Sequence Conservation and Three-Dimensional Structure in a Large Family of Esterases, Lipases, and Related Proteins. Protein Science, 2, 366-382. http://dx.doi.org/10.1002/pro.5560020309
|
[3]
|
Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., et al. (1992) The Alpha/Beta Hydrolase Fold. Protein Engineering, 5, 197-211. http://dx.doi.org/10.1093/protein/5.3.197
|
[4]
|
Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A. and Thim, L. (1991) A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex. Nature, 351, 491-494. http://dx.doi.org/10.1038/351491a0
|
[5]
|
Sarda, L. and Desnuelle, P. (1958) Actions of Pancreatic Lipase on Esters in Emulsions. Biochimica et Biophysica Acta, 30, 513-521. http://dx.doi.org/10.1016/0006-3002(58)90097-0
|
[6]
|
Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al. (1990) A Serine Protease Triad Forms the Catalytic Centre of a Triacylglycerol Lipase. Nature, 343, 767-770. http://dx.doi.org/10.1038/343767a0
|
[7]
|
Winkler, F.K., D’Arcy, A. and Hunziker, W. (1990) Structure of Human Pancreatic Lipase. Nature, 343, 771-774. http://dx.doi.org/10.1038/343771a0
|
[8]
|
Jaeger, K.E. and Eggert, T. (2002) Lipases for Biotechnology. Current Opinion in Biotechnology, 13, 390-397. http://dx.doi.org/10.1016/S0958-1669(02)00341-5
|
[9]
|
Hasan, F., Shah, A.A. and Hameed, A. (2006) Industrial Applications of Microbial Lipases. Enzyme and Microbial Technology, 39, 235-251. http://dx.doi.org/10.1016/j.enzmictec.2005.10.016
|
[10]
|
Ansorge-Schumacher, M.B. and Thum, O. (2013) Immobilised Lipases in the Cosmetics Industry. Chemical Society Reviews, 42, 6475-6490. http://dx.doi.org/10.1039/c3cs35484a
|
[11]
|
Turner, N.J. (2010) Deracemisation Methods. Current Opinion in Chemical Biology, 14, 115-121. http://dx.doi.org/10.1016/j.cbpa.2009.11.027
|
[12]
|
Gupta, R., Gupta, N. and Rathi, P. (2004) Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties. Applied Microbiology and Bbiotechnology, 64, 763-781. http://dx.doi.org/10.1007/s00253-004-1568-8
|
[13]
|
Soberon-Chavez, G. and Palmeros, B. (1994) Pseudomonas Lipases: Molecular Genetics and Potential Industrial Applications. Critical Reviews in Microbiology, 20, 95-105. http://dx.doi.org/10.3109/10408419409113549
|
[14]
|
Gilbert, E.J. (1993) Pseudomonas Lipases: Biochemical Properties and Molecular Cloning. Enzyme and Microbial Technology, 15, 634-645. http://dx.doi.org/10.1016/0141-0229(93)90062-7
|
[15]
|
Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E. and Palleroni, N.J. (2006) Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Reviews, 70, 510-547. http://dx.doi.org/10.1128/MMBR.00047-05
|
[16]
|
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L. and Schwede, T. (2014) Swiss-Model: Modelling Protein Tertiary and Quaternary Structure Using Evolutionary Information. Nucleic Acids Research, 42, W252-W258. http://dx.doi.org/10.1093/nar/gku340
|
[17]
|
Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The Swiss-Model Workspace: A Web-Based Environment for Protein Structure Homology Modelling. Bioinformatics, 22, 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770
|
[18]
|
Benkert, P., Biasini, M. and Schwede, T. (2011) Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics, 27, 343-350. http://dx.doi.org/10.1093/bioinformatics/btq662
|
[19]
|
Boston, M., Requadt, C., Danko, S., Jarnagin, A., Ashizawa, E., Wu, S., Poulose, A.J. and Bott, R. (1997) Structure and Function of Engineered Pseudomonas mendocina Lipase. In: Byron Rubin, E.A.D., Ed., Methods in Enzymology, Academic Press, Waltham, 298-317.
|
[20]
|
Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) Signalp 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nature Methods, 8, 785-786. http://dx.doi.org/10.1038/nmeth.1701
|
[21]
|
Esposito, D. and Chatterjee, D.K. (2006) Enhancement of Soluble Protein Expression through the Use of Fusion Tags. Current Opinion in Biotechnology, 17, 353-358. http://dx.doi.org/10.1016/j.copbio.2006.06.003
|
[22]
|
Narayanan, N., Khan, M. and Chou, C.P. (2011) Enhancing Functional Expression of Heterologous Burkholderia Lipase in Escherichia coli. Molecular Biotechnology, 47, 130-143. http://dx.doi.org/10.1007/s12033-010-9320-3
|
[23]
|
Liu, D., Schmid, R. D. and Rusnak, M. (2006) Functional Expression of Candida antarctica Lipase B in the Escherichia coli Cytoplasm—A Screening System for a Frequently Used Biocatalyst. Applied Microbiology and Biotechnology, 72, 1024-1032. http://dx.doi.org/10.1007/s00253-006-0369-7
|
[24]
|
Vorderwulbecke, T., Kieslich, K. and Erdmann, H. (1992) Comparison of Lipases by Different Assays. Enzyme and Microbial Technology, 14, 631-639. http://dx.doi.org/10.1016/0141-0229(92)90038-P
|
[25]
|
Chahinian, H., Nini, L., Boitard, E., Dubes, J.P., Comeau, L.C. and Sarda, L. (2002) Distinction between Esterases and Lipases: A Kinetic Study with Vinyl Esters and Tag. Lipids, 37, 653-662. http://dx.doi.org/10.1007/s11745-002-0946-7
|
[26]
|
Lopes, D.B., Fraga, L.P., Fleuri, L.F. and Macedo, G.A. (2011) Lipase and Esterase—To What Extent Can This Classification Be Applied Accurately? Science and Technology of Food, 31, 608-613.
|
[27]
|
Liu, H.L. and Anthonsen, T. (2002) Enantiopure Building Blocks for Chiral Drugs from Racemic Mixtures of Secondary Alcohols by Combination of Lipase Catalysis and Mitsunobu Esterification. Chirality, 14, 25-27. http://dx.doi.org/10.1002/chir.10037
|
[28]
|
Yamamoto, T., Shibata, N., Takashima, M., Nakamura, S., Toru, T., Matsunaga, N. and Hara, H. (2008) Enzymatic Resolution and Evaluation of Enantiomers of Cis-5[Prime or Minute]-Hydroxythalidomide. Organic & Biomolecular Chemistry, 6, 1540-1543. http://dx.doi.org/10.1039/b802459f
|
[29]
|
Maraite, A., Hoyos, P., Carballeira, J.D., Cabrera, A.C., Ansorge-Schumacher, M.B. and Alcantara, A.R. (2013) Lipase from Pseudomonas stutzeri: Purification, Homology Modelling and Rational Explanation of the Substrate Binding Mode. Journal of Molecular Catalysis B-Enzymatic, 87, 88-98. http://dx.doi.org/10.1016/j.molcatb.2012.11.005
|
[30]
|
Hoyos, P., Pace, V., Sinisterra, J.V. and Alcántara, A.R. (2011) Chemoenzymatic Synthesis of Chiral Unsymmetrical Benzoin Esters. Tetrahedron, 67, 7321-7329. http://dx.doi.org/10.1016/j.tet.2011.07.030
|
[31]
|
Parida, S. and Dordick, J.S. (1991) Substrate Structure and Solvent Hydrophobicity Control Lipase Catalysis and Enantioselectivity in Organic Media. Journal of the American Chemical Society, 113, 2253-2259. http://dx.doi.org/10.1021/ja00006a051
|
[32]
|
Palomo, J.M., Fernandez-Lorente, G., Mateo, C., Ortiz, C., Fernandez-Lafuente, R. and Guisan, J.M. (2002) Modulation of the Enantioselectivity of Lipases via Controlled Immobilization and Medium Engineering: Hydrolytic Resolution of Mandelic Acid Esters. Enzyme and Microbial Technology, 31, 775-783. http://dx.doi.org/10.1016/S0141-0229(02)00169-2
|