Amenability and the Extension Property


Let G be a locally compact group, H a closed amenable subgroup and u an element of the Herz Figà-Talamanca algebra of H with compact support, we prove the existence of an extension of u to G, with a good control of the norm and of the support of the extension.

Share and Cite:

Derighetti, A. (2014) Amenability and the Extension Property. Applied Mathematics, 5, 2945-2951. doi: 10.4236/am.2014.519279.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Herz, C.S. (1973) Harmonic Synthesis for Subgroups. Annales de l'institut Fourier, 23, 91-123.
[2] Fiorillo, C. (2009) An Extension Property for the Figà-Talamanca Herz Algebra. Proceedings of the American Mathematical Society, 137, 1001-1011.
[3] McMullen, J.R. (1972) Extensions of Positive-Definite Functions. Memoirs of the American Mathematical Society, 117.
[4] Delaporte, J. and Derighetti, A. (1992) On Herz’ Extension Theorem. Bollettino dell’Unime Matematica Italiana, (7) 6-A, 245-247.
[5] Reiter, H. and Stegman, J.D. (2000) Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford.
[6] Derighetti, A. (2004) On Herz’s Projection Theorem. Illinois Journal of Mathematics, 48, 463-476.
[7] Derighetti, A. (2011) Convolution Operators on Groups. Lecture Notes of the Unione Matematica Italiana, 11, Springer-Verlag, Berlin, Heidelberg.
[8] Delaporte, J. and Derighetti, A. (1995) p-Pseudomeasures and Closed Subgroups. Monatshefte für Mathematik, 119, 37-47.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.