Thermal Flows in the Surface Atmosphere of the Riobamba City

Abstract

This study evaluated the behavior of surface heat fluxes, in the meteorological and physical conditions of the Riobamba city (height of 2754 m regarding the sea level, geographical position 1°58'58'' Sour of latitude and 78°39'33'' West of longitude, and it is located in the Ecuadorian inter-Andean alley), these meteorological data were monitored at the ESPOCH stations of the alternative energy group during 2010-2012, and applied information processing dynamic model formulated by Van Ulden and Hostlag, which allows the determination of heat flow of sensible heat, latent heat and surface heat generated in the interaction soil-air. The measures allow us to know the average behavior of the heat flow data with variation between, 38.22, 22.15 and 155.20 W/m2 for the latent, sensible and surface heat respectively, while during the day hours significant variations in these flows that reach maximum values during the day with 139, 127 and 763 W/m2 and minimum at the night -3.9, -27.5 and -263.3 W/m2; results differ from those obtained under normal conditions at sea level.

Share and Cite:

Haro, A. , Limaico, C. and Llosas, Y. (2014) Thermal Flows in the Surface Atmosphere of the Riobamba City. Atmospheric and Climate Sciences, 4, 679-684. doi: 10.4236/acs.2014.44061.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pareja, M.A. (2010) Radiación solar y su aprovechamiento energético. Marcombo S.A., Barcelona Espana.
[2] Creus, A. (2010) Energía termosolar. Cano pina S. L., Cataluna Espana.
[3] Fernandez, J. (2010) Compendio de energía solar. ed. Mundi-prensa, Madrid-Espana.
[4] Canada, J. and Salvador, D. (1997) Radiación solar. ed. Servicio de publicaciones de la Universidad Politécnica de Valencia, Valencia Espana, 29-39, 47-63.
[5] Dal Pai, A.., Escobedo, J., Gomes, E. and Souza, A. (2011) Estimativas das componentes da radiacao solar incidente em superficies inclinadas baseadas na radiacao global horizontal. Mar., Revista Brasileira de Engenharia Agricola e Ambiental.
[6] Kiely, G. (1999) Ingeniería Ambiental. Tomo II y III, McGRAW-HILL, Espana.
[7] Reyes, S. (2001) Introducción a la meteorología. Universidad de Baja California, 30-50.
[8] Finzi, B. (1991) La qualitá dell'aria; Modelli previsionali e gestionali. Masson, Milano.
[9] Van Ulden, H. (1985) Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications. Journal of climate and Applied Metereology, 24, 1196-1207.
[10] Haro, A. (2003) Estudio de difusión de contaminantes en el Parque Industrial Riobamba. Informe Proyecto, Riobamba-Ecuador.
[11] Businger, W. and Izumi, B. (1971) Flux-Profile Relationships in the Atmospheric Surface Layer. Journal of the Atmospheric Sciences, 28, 181-189. http://dx.doi.org/10.1175/1520-0469(1971)028<0181:FP
RITA>2.0.CO;2

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.