Thermodynamic Characteristics of Adsorption-Desorption of Methane in 3^{#} Coal Seam of Sihe ()

Dongmin Ma^{1,2}, Jianchang Zhang^{1}, Jianping Bai^{2}, Hui Zhang^{1}

^{1}Xi’an University of Science and Technology, Xi’an, China.

^{2}National Key Laboratory of Coal and CBM Co-Mining Technology, Jincheng, China.

**DOI: **10.4236/nr.2014.512067
PDF
HTML
3,581
Downloads
4,642
Views
Citations

A series of methane adsorption-desorption isotherm experiments on anthracite of No. 3 Sihe coal mine were conducted at 20°C, 25°C, 30°C, 35°C and 40°C respectively. Based on Clausius-Clapeyron equation, isosteric heat of adsorption and maximum heat of adsorption has been calculated. These calculations indicate that the maximum heat of adsorption in process of elevated pressure (adsorption) and lowered stress (desorption) is 23.31 KJ/mol and 24.02 KJ/mol, so it belongs to physical adsorption. However, the latter is higher than the former. From the point of view of thermodynamics, in the adsorption-desorption equilibrium system, dropping pressure alone does not lead to desorption, but it improves adsorption of water vapor molecules on the surface of the coal pores. The adsorption heat of water vapor molecules is greater than 40 KJ/mol, so the methane on the surface of coal pores will be easily replaced by water vapor, and the desorption of methane occurs eventually. Thus, the gas production in coalbed methane well by pressure reduction is consistent with the negative pressure for gas extraction.

Keywords

Share and Cite:

Ma, D. , Zhang, J. , Bai, J. and Zhang, H. (2014) Thermodynamic Characteristics of Adsorption-Desorption of Methane in 3^{#} Coal Seam of Sihe. *Natural Resources*, **5**, 782-794. doi: 10.4236/nr.2014.512067.

1. Introduction

Coal methane mostly exists in the coal seams in the form of adsorption. Currently, the approach of coal methane desorption by drainage and lowering pressure for its ground production is widely adopted both at home and abroad. The method of negative pressure production with wells up and down connected is employed by Mine Gas Prevention and Control Center of Ningxia Bureau of Coal Geology at Shaqu Mine of Liulin County in Shanxi Province of China, and it has made great achievement with the production more than
^{3}

2. Samples and Experimental Apparatus

Experimental samples are fresh raw coal collected by channel method from Sihe No. 3 coal (WY) in Shanxi Group of Permo-carboniferous system.

The collected samples, after being crushed, ground and screened, were processed into 60 - 80 mesh and made into moisture-equilibrated samples according to the standards of ASTM (American Society for Testing Material).

The experiments were accomplished by employing AST-2000 simulation experimental apparatus for bulk sample coalbed methane adsorption and desorption. The temperatures were set at 20˚C, 25˚C, 30˚C, 35˚C and 40˚C respectively.

3. Experimental Results

Figure 1 and Figure 2 are the isothermal adsorption-desorption data by making use of the fitting to simulate mathematics software of the moisture-equilibrated samples at different temperatures.

To express the action process of adsorption-desorption and pressure, the experimental data of adsorption at the five temperatures are
^{ }[6] [7] . The results are shown in Table 1, Figure 1 and Figure 2.

Desorption equation:

Figure 1. Fitted curves on experimental adsorption data by

Figure 2. Fitted curves on experimental desorption data of Sihe No. 3 WY.

Table 1. Fitted parameters of the experimental data at five temperatures.

4. Isosteric Heat of Adsorption

Isosteric heat of adsorption, also called differential heat of adsorption [8] , is the heat released as the infinitesimal methane molecules are adsorbed, with the adsorption capacity being constant. It is the enthalpy change [9] at the moment of adsorption.

Isosteric heat of adsorption is expressed as, calculated with Clausius-Clapeyron equation [10] [11] :

(1)

In the equation: stands for isosteric heat of adsorption; for pressure; for absolute temperature; for gas constant, 8.314.

Integrate Equation (1) and get [12] :

(2)

Calculation process: correlates with n, adsorption capacity; fit data and get relation. Have several fixed, and the corresponding lnP can be got with fitting formulas. Then, plot with at fixed adsorption capacity and have linear fitting, so adsorption isostere is achieved, based on whose slope isosteric heat of adsorption is calculated.

Calculation of isosteric heat of adsorption in process of adsorption of moisture-equilibrated samples of Sihe No. 3 WY.

1) Based on the experimental data of isosteric adsorption, draw a scatter diagram at different temperatures.

2) Have linear fitting, and the fitting equation is shown in Figure 3.

3) Based on the above fitting formula, calculate of—fixed adsorption—at different temperatures (20˚C - 40˚C), shown by Table 2.

4) Plot ^{ }data graph.

5) At different fixed adsorption capacity, linearly fit the relational data of and. The fitting equation is shown by Figure 4.

Figure 3. Relationship of pressures (logarithms) and adsorption capacity in the adsorption process.

Table 2. Calculations of lnP on different adsorption capacity in the adsorption process.

Figure 4. Isosteric adsorption line in the adsorption process.

6) Based on the slope of linear fitting, find isosteric heat of adsorption at different adsorption capacity by Equation (3).

(3)

In the equation, is the slope of linear fitting equation.

The calculations are shown in Table 3.

7) Figure 5 is the curve of isosteric heat of adsorption with the change of adsorption capacity.

In the same way, calculate the isosteric heat of adsorption in process of desorption of moisture-equilibrated samples of Sihe No. 3 WY.

1) Based on the experimental data of isosteric desorption at different temperatures, Figure 6 is created by relating (KPa)—the natural logarithm of pressure to (mmol/g)—adsorption capacity.

2) Fit the data with linear lnP-n. The fitting equation is shown by Figure 6.

3) Based on the above fitting formula, calculate the value of on—fixed adsorption —at different temperatures (20˚C - 40˚C), shown by Table 4.

4) Plot ^{ }data graph.

5) At different fixed adsorption capacity, linearly fit the relational data of and. The fitting equation is shown by Figure 7.

6) Based on the slope of linear fitting, i.e., find isosteric heat of adsorption at different adsorption capacity by Equation (3). The results are shown by Table 5.

7) Figure 8 is the curve of isosteric heat of adsorption with the change of adsorption capacity.

5. Maximum Heat of Adsorption

Maximum heat of adsorption is the isosteric heat of adsorption when the pressure tends to zero [13] [14] .

Usually Virial equation is used to calculate maximum heat of adsorption. In the condition of extremely low pressure, adsorption isotherm should conform to

(4)

In the equation:, adsorption capacity,;, equilibrium pressure, KPa;,
^{−1}/KPa.

Virial Equation is used to describe the adsorption isotherm in the whole process of experimental scope, and by the way of extrapolation, ,

Figure 5. Change of isosteric heat of adsorption with adsorption capacity in adsorption process of Sihe No. 3 WY.

Figure 6. Relationship of pressures (logarithms) and adsorption capacity in the desorption process.

Table 3. Calculations of the isosteric heat of adsorption in the adsorption process.

Figure 7. Isosteric adsorption line in the desorption process.

Figure 8. Isosteric heat of adsorption with adsorption capacity in desorption process of Sihe No. 3 WY.

Table 4. Calculations of lnP on different adsorption capacity in the desorption process.

Table 5. Calculations of the isosteric heat of adsorption in the desorption process.

and abide by. Vant Hoff Equation goes as follows:

(5)

In the equation, the physical interpretation of is the mole enthalpy difference between adsorption state and gas state when the pressure tends to zero, so is actually, maximum heat of adsorption.

Find

Virial Equation below is used to describe adsorption isotherm when adsorption is in equilibrium.

(6)

In the equation:, two-dimensional dispersion pressure;, Virial constant.

Equation (6) can be transformed by Gibbs Equation to Virial adsorption isotherm:

(7)

When the pressure is very low, is relatively small, and high order term can be neglected. Then, the plotting of to n should be linear. In other words,

(8)

Therefore,

(9)

Suppose the intersection value of plotting and vertical axis is, and. Then,

(10)

Therefore,

The method of finding

Calculation of maximum heat of adsorption by

The relationship between the known

(11)

Usually the plotting of and is linear, , maximum heat of adsorption, is determined by its slope.

Calculation of maximum heat of adsorption in process of adsorption of moisture-equilibrated samples of Sihe No. 3 WY.

1) Based on the experimental data of isosteric adsorption at different temperatures, plot with Virial (KPa/mmol·g^{−1}) and adsorption capacity (mol·g^{−1}). (See Figure 9)

2) Linearly fit Virial plotting by. (See Table 6)

3) Based on fitting result intercept, i.e. the value of, calculate

4) Plot and and have linear fitting.

:

: Linear fitting results:

5) Calculate maximum heat of adsorption based on, the linear fitting slope. The equation is as follows:

(12)

Figure 9. Cross plotting with Virial for adsorption data of Sihe No. 3 WY.

Figure 10. Cross plot with

Table 6. Fitted parameters of the Virial data in the adsorption process.

Table 7. Calculations of

It is found, the minus indicating that adsorption is an exothermic process.

Calculation of maximum heat of adsorption in process of desorption of moisture-equilibrated samples of Sihe No. 3 WY.

1) Based on the experimental data of isosteric desorption at different temperatures, plot and, adsorption capacity. (See Figure 11)

2) Fit Virial plotting by linear. The results are shown in Table 8.

3) Based on fitting result intercept, i.e. the value of, calculate

4) Plot and and have linear fitting.

:

: Linear fitting results:

5) Calculate maximum heat of adsorption based on, the linear fitting slope.

Find:.

6. Contrast of Adsorption Heat Results

Table 10 is the isosteric heat of adsorption calculations result. The maximum heat of desorption process is higher than adsorption.

7. Conclusions

1) Adsorption heat and adsorption capacity are positively correlative.

2) Adsorption heat in rising pressure is less than that in dropping pressure. When the fixed adsorption capacity is 0.2 - 1.0 mmol/g, adsorption heat is 19 - 51 KJ/mol. Methane-coal adsorption belongs to physical adsorption [20] -[24] .

3) Desorption rate increases as the temperature rises. Adsorption heat in rising pressure is less than that in dropping pressure. To make desorption occur, heat supply is needed, and the adsorption heat of water vapor is larger than 40 KJ/mol. Therefore, as long as water vapor exists, desorption probably occurs in the system of methane-coal adsorption. We believe that pressure reduction results in the partial pressure increase of water va-

Figure 11. Cross plot with Virial for desorption data of Sihe No. 3 WY.

Figure 12. Cross plot with

Table 8. Fitted parameters of the Virial data in the desorption process.

Table 9. Calculations of henry law constant in the desorption process.

Table 10. Calculations of isosteric heat of adsorption.

por in the local space, and heat is released while water vapor adsorbs, and thus the methane molecules in the corresponding places of the pore surface turn into free state. In the methane-coal-water interface interaction, with micro-environmental pressure decreasing, methane’s desorption on the pore surface of coal is actually the result of replacement of methane molecules by water vapor (adsorption) in the corresponding adsorption sites.

Conflicts of Interest

The authors declare no conflicts of interest.

[1] | Sommen, G.J., et al. (1995) Chemical Structure and Properties of Coal VII-Sorption Capacity for Methane. Fuel, 34, 344. (In English) |

[2] | Moffat, D.H. and Weale, K.E. (1995) Sorption by Coal of Methane at High Press. Fuel, 34, 449. (In English) |

[3] |
Rupple, T.C., et al. (1974) Adsorption of Methane on Dry Coal at Elevated Pressure. Fuel, 53, 152. (In English) http://dx.doi.org/10.1016/0016-2361(74)90002-7 |

[4] | Zhong, L.W. (2004) Adsorptive Capacity of Coals and Its Affecting Factors. Journal of China University of Geosciences, 29, 327-334. (In Chinese) |

[5] | Hu, T., Ma, Z.-F. and Yao, H.-Q. (2002) Study on High Pressure Adsorption Isotherms of Supercritical Methane. Natural Gas Chemical Industry, 27, 36-40. (In Chinese) |

[6] | Nie, B.-S., Yang, T., Li, X.-C., et al. (2013) Research on Diffusion of Methane in Coal Particles. Journal of China University of Mining & Technology, 42, 975-980. (In Chinese) |

[7] | Ma, D.M., Zhang, S.A. and Lin, Y.B. (2011) Isothermal Adsorption and Desorption Experiment of Coal and Experimental Results Accuracy Fitting. Journal of China Coal Society, 36, 477-480. (In Chinese) |

[8] | Zheng, Q.-R., Birkett, G. and Do, D.D. (2009) Theoretical and Experimental Analysis of Methane Adsorption on Activated Carbon. Natural Gas Chemical Industry, 34, 41-44. (In Chinese) |

[9] | Ma, D.M., Zhang, S.A., Wang, P.G., et al. (2011) Mechanism of Coalbed Methane Desorption at Different Temperatures. Coal Geology & Exploration, 39, 20-23. (In Chinese) |

[10] |
Ramirez-Pastor, A.J. and Bulnes, F. (2000) Differential Heat of Adsorption in the Presence of an Order-Disorder Phase Transition. Physica A: Statistical Mechanics and Its Applications, 283, 198-203. (In English) http://dx.doi.org/10.1016/S0378-4371(00)00152-7 |

[11] | Lu, S., Wang, L. and Qin, L. (2014) Analysis on Adsorption Capacity and Adsorption Thermodynamic Characteristics of Different Metamorphic Degree Coals. Coal Science and Technology, 42, 130-135. (In Chinese) |

[12] | Cui, Y., Zhang, Q. and Yang, X. (2003) Adsorption Properties and Variation of Isosteric Adsorption Heat of Different Coal. Natural Gas Industry, 23, 130-131. (In Chinese) |

[13] | Jiang, W., Zhang, Q. and Cui, Y. (2014) Quantum Chemistry Characteristics of Coal Adsorbing and Their Application. Natural Gas Geoscience, 25, 444-452. (In Chinese) |

[14] | Fu, G. and Zhou, L. (2004) Measurement and Analysis of Methane Adsorption Isotherms on Activated Carbon. Natural Gas Industry, 24, 92-94. (In Chinese) |

[15] | Yang, F., Ning, Z., Kong, D., Peng, P. and Zhao, H.W. (2013) Comparison Analysis on Model of Methane Adsorption Isotherms in Shales. Coal Science and Technology, 41, 86-89. (In Chinese) |

[16] | Xie, C. and Zheng, Q. (2012) Experiment and Theoretical Analysis of Methane Adsorption on Activated Carbon under Supercritical Temperature. Natural Gas Chemical Industry, 37, 40-44. (In Chinese) |

[17] | Ruthven, D.M. (1984) Principle of Adsorption and Adsorption Processes. Chap. 2-3, John Wiley & Sons, New York. |

[18] | Zhou, L., Li, M. and Zhou, Y. (2000) Adsorption Measurements and Theoretical Analysis of Supercritical Methane at High Surface Activated Carbon. Science in China Series B: Chemistry, 30, 49-56. (In Chinese) |

[19] | Zhou, Y. and Zhou, L. (1997) Study on the Adsorption Isotherms of Supercritical Hydrogen on Activated Carbon. Acta Physico-Chimica Sinica, 13, 119-126. (In Chinese) |

[20] | Zhao, Z. (2005) Adsorption Application Principle. Chemical Industry Press, Beijing. (In Chinese) |

[21] | Wang, Q., Li, L. and Tian, H. (2011) Influence of Modified Activated Carbon on Adsorption Heat of Methane by Inverse Gas Chromatography. Chemistry and Industry of Forest Products, 31, 101-104. (In Chinese) |

[22] | Yao, C., Qin, Z. and Wu, F. (2011) Kinetic and Thermodynamic Characteristics of Direct Fast Bordeaux Adsorption on Activated Carbon from Silicon-Freed Rice Hull. CIESC Journal, 62, 977-984. (In Chinese) |

[23] | Sun, P. (2000) Study on the Mechanism of Interaction for Coal and Methane Gas. Coal, 9, 18-21. (In Chinese) |

[24] | Chen, C., Wei, X. and Xian, X. (2000) Ab Initio Study on the Interaction between CH4 and the Coal Surface. Journal of Chongqing University (Natural Science Edition), 23, 77-79. (In Chinese) |

Journals Menu

Contact us

+1 323-425-8868 | |

customer@scirp.org | |

+86 18163351462(WhatsApp) | |

1655362766 | |

Paper Publishing WeChat |

Copyright © 2024 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.