[1]
|
Nemirovski, A. (2003) Lectures on Modern Convex Optimization.
|
[2]
|
Ramana, M.V., Tun?el, L. and Wolkowicz, H. (1997) Strong Dality for Semidefinite Programming. SIAM Journal on Optimization, 7, 641-662. http://dx.doi.org/10.1137/S1052623495288350
|
[3]
|
Vandenberghe, L. and Boyd, S. (1996) Semidefinite Programming. SIAM Review, 38, 49-95.
http://dx.doi.org/10.1137/1038003
|
[4]
|
Fujisawa, K. and Kojima, M. (1995) SDPA (Semidefinite Programming Algorithm) Users Manual. Technical Report b-308, Tokyo Institute of Technology.
|
[5]
|
Helmberg, C., Rendl, F., Vanderbei, R. and Wolkowicz, H. (1996) An Interior-Point Method for Semidefinite Programming. SIAM Journal on Optimization, 6, 342-361. http://dx.doi.org/10.1137/0806020
|
[6]
|
Vandenberghe, L. and Boyd, S. (1995) Primal-Dual Potential Reduction Method for Problems Involving Matrix Inequalities. Mathematical Programming, Series B, 69, 205-236. http://dx.doi.org/10.1007/BF01585558
|
[7]
|
Boyd, S. and Vandenberghe, L. (2004) Convex Optimization. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511804441
|
[8]
|
Krislock, N., Malick, J. and Roupin, F. (2012) Nonstandard Semidefinite Bounds for Solving Exactly 0-1 Quadratic Problems. EURO XXV, Vilnius.
|
[9]
|
Lebbah, Y., Michel, C., Rueher, M., Merlet, J. and Daney, D. (2005) Efficient and Safe Global Constraints for Handling Numerical Constraint Systems. SIAM Journal on Numerical Analysis, 42, 2076-2097.
http://dx.doi.org/10.1137/S0036142903436174
|
[10]
|
Neumaier, A. (2003) Complete Search in Continuous Global Optimization and Constraint Satisfaction. Acta Numerica.
|
[11]
|
Alefeld, G. and Herzberger, J. (1983) Introduction to Interval Computations. Academic Press, New York.
|
[12]
|
Moore, R.E. (1979) Methods and Applications of Interval Analysis. SIAM, Philadelphia.
http://dx.doi.org/10.1137/1.9781611970906
|
[13]
|
Neumaier, A. (2001) Introduction to Numerical Analysis. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511612916
|
[14]
|
Jansson, C. (2004) Rigorous Lower and Upper Bounds in Linear Programming. SIAM Journal on Optimization (SIOPT), 14, 914-935. http://dx.doi.org/10.1137/S1052623402416839
|
[15]
|
Neumaier, A. and Shcherbina, O. (2004) Safe Bounds in Linear and Mixed-Integer Programming. Mathematical Programming, 99, 283-296.
|
[16]
|
Davis, E. (1987) Constraint Propagation with Interval Labels. Artificial Intelligence, 32, 281-331.
|
[17]
|
Krawczyk, R. (1995) Fehlerabschatzung bei Linearer Optimierung. In: Nickel, K., Ed., Interval Mathematics, Lecture Notes in Computer Science, Vol. 29, Springer, Berlin, 215-222.
|
[18]
|
Jansson, C. (1985) Zur linearen Optimierung mit unscharfen Daten. Dissertation, Fachbereich Mathematik, Universitat Kaiserslautern, Kaiserslautern.
|
[19]
|
Jansson, C. and Rump, S.M. (1991) Rigorous Solution of Linear Programming Problems with Uncertain Data. Zeitschrift für Operations Research, 35, 87-111.
|
[20]
|
Benhamou, F. and Older, W. (1997) Applying Interval Arithmetlc to Real, Integer and Boolean Constraints. Journal of Logic Programming, 32, 1-24.
|
[21]
|
Berkelaar, M. (2005) Lpsolve 5.5, Free Solver, lpsolve.sourceforge.net. Technical Report, Eindhoven University of Technology, Eindhoven.
|
[22]
|
Kearfott, R.B. (1996) Rigorous Global Search: Continuons Problems.
|
[23]
|
Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M. and Yamashita, M. (2008) SDPA (Semidefinite Programming Algorithm) and SDPA-GMP User’s Manual—Version 7.1.1.
|
[24]
|
Audet, C. (1997) Optimisation globale structurée: Propriétés, équivalences et résolution. Ph.D. Thesis, école Polythecnique de Montréal, Montréal.
|