[1]
|
Verma, A. and Solomon, S.D. (2009) Diastolic Dysfunction as a Link between Hypertension and Heart Failure. Medical Clinics of North America, 93, 647-664. http://dx.doi.org/10.1016/j.mcna.2009.02.013
|
[2]
|
Sciarretta, S., Paneni, F., Palano, F., Chin, D., Tocci, G., Rubattu, S. and Volpe, M. (2009) Role of the Renin-Angiotensin-Aldosterone System and Inflammatory Processes in the Development and Progression of Diastolic Dysfunction. Clinical Science, 116, 467-477. http://dx.doi.org/10.1042/CS20080390
|
[3]
|
Reboldi, G., Gentile, G., Angeli, F. and Verdecchia, P. (2009) Choice of ACE Inhibitor Combinations in Hypertensive Patients with Type 2 Diabetes: Update after Recent Clinical Trials. Vascular Health and Risk Management, 5, 411-427.
http://dx.doi.org/10.2147/VHRM.S4235
|
[4]
|
Van Heerebeek, L., Somsen, A. and Paulus, W.J. (2009) The Failing Diabetic Heart: Focus on Diastolic Left Ventricular Dysfunction. Current Diabetes Reports, 9, 79-86. http://dx.doi.org/10.1007/s11892-009-0014-9
|
[5]
|
Drucker, D.J. (2007) The Role of Gut Hormones in Glucose Homeostasis. Journal of Clinical Investigation, 117, 24-32.
http://dx.doi.org/10.1172/JCI30076
|
[6]
|
Nikolaidis, L.A., Sunil Mankad, S., Sokos, G.G., Miske, G., Shah, A., Elahi, D. and Shannon, R.P. (2004) Effects of Glucagon-Like Peptide-1 in Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction after Successful Reperfusion. Circulation, 109, 962-965. http://dx.doi.org/10.1161/01.CIR.0000120505.91348.58
|
[7]
|
Yu, M., Moreno, C., Hoagland, K.M., Dahly, A., Ditter, K., Mistry, M. and Roman, R.J. (2003) Antihypertensive Effects of Glucagon-Like Peptide-1 in Dahl Salt-Sensitive rats. Journal of Hypertension, 21, 1125-1135.
http://dx.doi.org/10.1097/00004872-200306000-00012
|
[8]
|
Garber, A.J. (2012) Novel GLP-1 Receptor Agonists for Diabetes. Expert Opinion on Investigational Drugs, 21, 45-57.
http://dx.doi.org/10.1517/13543784.2012.638282
|
[9]
|
Chang, G., Zhang, P., Ye, L., Lu, K., Wang, Y., Duan, Q., et al. (2013) Protective Effects of Sitagliptin on Myocardial Injury and Cardiac Function in an Ischemia/Reperfusion Rat Model. European Journal of Pharmacology, 718, 105-113.
|
[10]
|
Henrion, D., Dechaux, E., Dowell, F.J., Maclouf, J., Samuel, J., Levy, B.I. and Michel, J.B. (1997) Alteration of Flow-Induced Dilatation in Mesenteric Resistance Arteries of L-NAME Treated Rats and Its Partial Association with Induction of Cyclo-Oxygenase-2. British Journal of Pharmacology, 121, 83-90. http://dx.doi.org/10.1038/sj.bjp.0701109
|
[11]
|
Khan, B.V., Harrison, D.G., Olbrych, M.T., Alexander, R.W. and Medford, R.M. (1996) Nitric Oxide Regulates Vascular Cell Adhesion Molecule 1 Gene Expression and Redox-Sensitive Transcriptional Events in Human Vascular Endothelial Cells. Proceedings of the National Academy of Sciences, 93, 9114-9119.
http://dx.doi.org/10.1073/pnas.93.17.9114
|
[12]
|
Bernatova, I., Pechanova, O. and Simko, F. (1994) Effect of Captopril in L-NAME-Induced Hypertension on the Rat Myocardium, Aorta, Brain and Kidney. Experimental Physiology, 84, 1095-1105.
http://dx.doi.org/10.1017/S0958067099018904
|
[13]
|
Bose, A.K., Mocanu, M.M., Carr, R.D. and Yellon, D.M. (2005) Glucagon Like Peptide-1 Is Protective against Myocardial Ischemia/Reperfusion Injury When Given Either as a Preconditioning Mimetic or at Reperfusion in an Isolated Rat Heart Model. Cardiovascular Drugs and Therapy, 19, 9-11. http://dx.doi.org/10.1007/s10557-005-6892-4
|
[14]
|
Freslon, J.L. and Giudicelli, J.F. (1983) Compared Myocardial and Vascular Effects of Captopril and Dihydralazine during Hypertension Development in Spontaneously Hypertensive Rats. British Journal of Pharmacology, 80, 533-543.
http://dx.doi.org/10.1111/j.1476-5381.1983.tb10726.x
|
[15]
|
Riley, V. (1960) Adaptation of Orbital Bleeding Technique to Rapid Serial Blood Studies. Experimental Biology and Medicine, 104, 751-755. http://dx.doi.org/10.3181/00379727-104-25975
|
[16]
|
Mattson, D.L. (1998) Long-Term Measurement of Arterial Blood Pressure in Conscious Mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 274, R564-R570.
|
[17]
|
Aukrust, P., Libak, N.B., Muller, F., Lien, E., Espevik, T. and Froland, S.S. (1994) Serum Levels of Tumor Necrosis Factor-α (TNF-α) and Soluble TNF Receptors in Human Immunodeficiency Virus Type 1 Infection, Correlations to Clinical Immunologic and Virologic Parameters. Journal of Infectious Diseases, 169, 420-424.
http://dx.doi.org/10.1093/infdis/169.2.420
|
[18]
|
Ohkawa, H., Ohishi, M. and Yagi, K. (1979) Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Biochemistry, 95, 351-358. http://dx.doi.org/10.1016/0003-2697(79)90738-3
|
[19]
|
Ellman, G.I. (1959) Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics, 82, 70-77.
http://dx.doi.org/10.1016/0003-9861(59)90090-6
|
[20]
|
Satoh, H. and Satoh, S. (1984) Prostaglandine E2 and I2 Production in Isolated Renal Arteries in Absence or Presence of Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 188, 873-876.
http://dx.doi.org/10.1016/0006-291X(84)91476-1
|
[21]
|
Brooks, W.W., Bing, O.H.L., Robinson, K.G., Slawsky, M.T., Chaletsky, D.M. and Conard, C.H. (1997) Effect of Angiotensin-Converting Enzyme Inhibition on Myocardial Fibrosis and Function in Hypertrophied and Failing Myocardium from the Spontaneously Hypertensive Rat. Circulation, 96, 4002-4010.
http://dx.doi.org/10.1161/01.CIR.96.11.4002
|
[22]
|
Hill, B.A. (1971) Principles of Medical Statistics. 9th Edition, Lancet Limited Publications, London, 147, 383.
|
[23]
|
Lorber, D. (2012) GLP-1 Receptor Agonists: Effects on Cardiovascular Risk Reduction. Cardiovascular Therapeutics, 31, 238-249.
|
[24]
|
Wong, W.T., Wong, S.L., Tian, X.Y. and Huang, Y. (2010) Endothelial Dysfunction: The Common Consequence in Diabetes and Hypertension. Journal of Cardiovascular Pharmacology, 55, 300-307.
http://dx.doi.org/10.1097/FJC.0b013e3181d7671c
|
[25]
|
Stratton, I.M., Cull, C.A., Adler, A.I., Matthews, D.R., Neil, H.A. and Holman, R.R. (2006) Additive Effects of Glycaemia and Blood Pressure Exposure on Risk of Complications in Type 2 Diabetes: A Prospective Observational Study (UKPDS 75). Diabetologia, 49, 1761-1769. http://dx.doi.org/10.1007/s00125-006-0297-1
|
[26]
|
Chinda, K., Palee, S., Surinkaew, S., Phornphutkul, M., Chattipakorn, S. and Chattipakorn, N. (2013) Cardioprotective Effect of Dipeptidyl Peptidase-4 Inhibitor during Ischemia-Reperfusion Injury. International Journal of Cardiology, 167, 451-457. http://dx.doi.org/10.1016/j.ijcard.2012.01.011
|
[27]
|
Huisamen, B., Genis, A., Marais, E. and Lochner, A. (2011) Pre-Treatment with a DPP-4 Inhibitor Is Infarct Sparing in Hearts from Obese, Pre-Diabetic Rats. Cardiovascular Drugs and Therapy, 25, 13-20.
http://dx.doi.org/10.1007/s10557-010-6271-7
|
[28]
|
Schwartz, E.A., Koska, J., Mullin, M.P., Syoufi, I., Schwenke, D.C. and Reaven, P.D. (2010) Exenatide Suppresses Postprandial Elevations in Lipids and Lipoproteins in Individuals with Impaired Glucose Tolerance and Recent Onset Type 2 Diabetes Mellitus. Atherosclerosis, 212, 217-222. http://dx.doi.org/10.1016/j.atherosclerosis.2010.05.028
|
[29]
|
Grieve, D.J., Cassidy, R.S. and Green, B.D. (2009) Emerging Cardiovascular Actions of the Incretin Hormone Glucagon-Like Peptide-1: Potential Therapeutic Benefits beyond Glycaemic Control? British Journal of Pharmacology, 157, 1340-1351. http://dx.doi.org/10.1111/j.1476-5381.2009.00376.x
|
[30]
|
Ku, H.C., Chen, W.P. and Su, M.J. (2010) GLP-1 Signaling Preserves Cardiac Function in Endotoxemic Fischer 344 and DPP4-Deficient Rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 382, 463-474.
http://dx.doi.org/10.1007/s00210-010-0559-9
|
[31]
|
Mundil, D., Cameron-Vendrig, A. and Husain, M. (2012) GLP-1 Receptor Agonists: A Clinical Perspective on Cardiovascular Effects. Diabetes and Vascular Disease Research, 9, 95-108. http://dx.doi.org/10.1177/1479164112441526
|
[32]
|
Gill, A., Hoogwerf, B.J., Burger, J., Bruce, S., Macconell, L., Yan, P., Braun, D., Giaconia, J. and Malone, J. (2010) Effect of Exenatide on Heart Rate and Blood Pressure in Subjects with Type 2 Diabetes Mellitus: A Double-Blind, Placebo Controlled, Randomized Pilot Study. Cardiovascular Diabetology, 9, 16.
|
[33]
|
Scheen, A.J. (2012) Cardiovascular Effects of Gliptins. Nature Reviews. Cardiology, 10, 73-84.
|
[34]
|
Kim, M., Platt, M.J., Shibasaki, T., Quaggin, S.E., Backx, P.H., Seino, S., Simpson, J.A. and Drucker, D.J. (2013) GLP-1 Receptor Activation and Epac2 Link Atrial Natriuretic Peptide Secretion to Control of Blood Pressure. Nature Medicine, 19, 567-575. http://dx.doi.org/10.1038/nm.3128
|
[35]
|
Read, P.A., Hoole, S.P., White, P.A., Khan, F.Z., O’Sullivan, M., West, N.E. and Dutka, D.P. (2011) A Pilot Study to Assess Whether Glucagon-Like Peptide-1 Protects the Heart from Ischemic Dysfunction and Attenuates Stunning after Coronary Balloon Occlusion in Humans. Circulation: Cardiovascular Interventions, 4, 266-272.
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.960476
|
[36]
|
Liu, L., Liu, J., Wong, W.T., Tian, X.Y., Lau, C.W., Wang, Y.X., et al. (2012) Dipeptidyl Peptidase 4 Inhibitor Sitagliptin Protects Endothelial Function in Hypertension through a Glucagon-Like Peptide 1-Dependent Mechanism. Hypertension, 60, 833-841. http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.195115
|
[37]
|
Pacheco, B.P., Crajoinas, R.O., Couto, G.K., Davel, A.P., Lessa, L.M., Rossoni, L.V. and Girardi, A.C. (2011) Dipeptidyl Peptidase IV Inhibition Attenuates Blood Pressure Rising in Young Spontaneously Hypertensive Rats. Journal of Hypertension, 29, 520-528. http://dx.doi.org/10.1097/HJH.0b013e328341939d
|
[38]
|
Ceriello, A., Esposito, K., Testa, R., Bonfigli, A.R., Marra, M. and Giugliano, D. (2011) The Possible Protective Role of Glucagon-Like Peptide 1 on Endothelium During the Meal and Evidence for an “Endothelial Resistance” to Glucagon-Like Peptide 1 in Diabetes. Diabetes Care, 34, 697-702. http://dx.doi.org/10.2337/dc10-1949
|
[39]
|
Koska, J., Schwartz, E.A., Mullin, M.P., Schwenke, D.C. and Reaven, P.D. (2010) Improvement of Postprandial Endothelial Function after a Single Dose of Exenatide in Individuals with Impaired Glucose Tolerance and Recent-Onset Type 2 Diabetes. Diabetes Care, 33, 1028-30. http://dx.doi.org/10.2337/dc09-1961
|
[40]
|
Arakawa, M., Mita, T., Azuma, K., Ebato, C., Goto, H., Nomiyama, T., Fujitani, Y., Hirose, T., Kawamori, R. and Watada, H. (2010) Inhibition of Monocyte Adhesion to Endothelial Cells and Attenuation of Atherosclerotic Lesion by a Glucagon-Like Peptide-1 Receptor Agonist, Exendin-4. Diabetes, 59, 1030-1037.
http://dx.doi.org/10.2337/db09-1694
|
[41]
|
Liu, H., Hu, Y., Simpson, R.W. and Dear, A.E. (2008) Glucagon-Like Peptide-1 Attenuates Tumour Necrosis Factor-Alpha-Mediated Induction of Plasmogen Activator Inhibitor-1 Expression. Journal of Endocrinology, 196, 57-65.
http://dx.doi.org/10.1677/JOE-07-0387
|
[42]
|
Ferreira, L., Teixeira-De-Lemos, E., Pinto, F., Parada, B., Mega, C., Vala, H., et al. (2010) Effects of Sitagliptin Treatment on Dysmetabolism, Inflammation, and Oxidative Stress in an Animal Model of Type 2 Diabetes (ZDF Rat). Mediators of Inflammation, 2010, Article ID: 592760.
|
[43]
|
Matsui, T., Nishino, Y., Takeuchi, M. and Yamagishi, S.I. (2011) Vildagliptin Blocks Vascular Injury in Thoracic Aorta of Diabetic Rats by Suppressing Advanced Glycation End Product-Receptor Axis. Pharmacological Research, 63, 383-388. http://dx.doi.org/10.1016/j.phrs.2011.02.003
|
[44]
|
Zhang, X., Wang, Z., Huang, Y. and Wang, J. (2011) Effects of Chronic Administration of Alogliptin on the Development of Diabetes and β-Cell Function in High Fat Diet/Streptozotocin Diabetic Mice. Diabetes, Obesity and Metabolism, 13, 337-347. http://dx.doi.org/10.1111/j.1463-1326.2010.01354.x
|
[45]
|
Liu, Q., Anderson, C., Broyde, A., Polizzi, C., Fernandez, R., Baron, A. and Parkes, D.G. (2010) Glucagon-Like Peptide-1 and the Exenatide Analogue AC3174 Improve Cardiac Function, Cardiac Remodeling, and Survival in Rats with Chronic Heart Failure. Cardiovascular Diabetology, 9, 76. http://dx.doi.org/10.1186/1475-2840-9-76
|
[46]
|
Ossum, A., van Deurs, U., Engstrom, T., Jensen, J.S. and Treiman, M. (2009) The Cardioprotective and Inotropic Components of the Postconditioning Effects of GLP-1 and GLP-1(9-36)a in an Isolated Rat Heart. Pharmacological Research, 60, 411-417. http://dx.doi.org/10.1016/j.phrs.2009.06.004
|
[47]
|
Best, J.H., Hoogwerf, B.J., Herman, W.H., Pelletier, E.M., Smith, D.B., Wenten, M. and Hussein, M.A. (2011) Risk of Cardiovascular Disease Events in Patients with Type 2 Diabetes Prescribed the Glucagon-Like Peptide 1 (GLP-1) Receptor Agonist Exenatide Twice Daily or Other Glucose-Lowering Therapies: A Retrospective Analysis of the Life Link Database. Diabetes Care, 34, 90-95. http://dx.doi.org/10.2337/dc10-1393
|
[48]
|
Pfisterer, M., Buser, P., Rickli, H., Gutmann, M., Erne, P., et al. (2009) BNP-Guided vs Symptom-Guided Heart Failure Therapy: The Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIMECHF) Randomized Trial. JAMA, 301, 383-392. http://dx.doi.org/10.1001/jama.2009.2
|
[49]
|
Yan, X., Sano, M., Lu, L., Wang, W., Zhang, Q., Zhang, R.Y., Wang, L.J., Chen, Q.J., Fukuda, K. and Shen, W.F. (2010) Plasma Concentrations of Osteopontin, but Not Thrombin-Cleaved Osteopontin, Are Associated with the Presence and Severity of Nephropathy and Coronary Artery Disease in Patients with Type 2 Diabetes Mellitus. Cardiovascular Diabetology, 9, 70. http://dx.doi.org/10.1186/1475-2840-9-70
|
[50]
|
Susana, R., Amaia, Z. and Diez, J. (2012) GLP-1 and Cardioprotection: From Bench to Bedside. Cardiovascular Research, 94, 1-8.
|
[51]
|
Guleria, R.S., Choudhary, R., Tanaka, T., Baker, K.M. and Pan, J. (2011) Retinoic Acid Receptor-Mediated Signaling Protects Cardiomyocytes from Hyperglycemia Induced Apoptosis: Role of the Rennin Angiotensin System. Journal of Cellular Physiology, 226, 1292-1307. http://dx.doi.org/10.1002/jcp.22457
|
[52]
|
Kumar, R., Yong, Q.C., Thomas, C.M. and Baker, K.M. (2012) Intracardiac Intracellular Angiotensin System in Diabetes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302, R510-R517.
http://dx.doi.org/10.1152/ajpregu.00512.2011
|
[53]
|
Kurdi, M. and Booz, G.W. (2011) New Take on the Role of Angiotensin II in Cardiac Hypertrophy and Fibrosis. Hypertension, 57, 1034-1038. http://dx.doi.org/10.1161/hypertensionaha.111.172700
|