The Possible Role of the Incretin Enhancer Sitaglipten, in Renal Ischemic Reperfusion Injury in Type 2 Diabetes Mellitus

Abstract

Background: Diabetes mellitus (DM) especially type 2 is a major health problem and diabetic nephropathy is the main cause of end stage renal disease (ESRD). Renal ischemia/reperfusion (I/R) injury is common in diabetic patients. Recent studies reported increased vulnerability of kidneys to I/R injury in diabetic rats. In view of the reported efficacy of incretin enhancer on I/R injury. Aim: This study was designed to assess the effect of sitaglipten on renal I/R in type 2 diabetes mellitus . Methods: Type 2 DM in rats were induced by administration of nicotinamide (230 mg/kg, i.p.), 15 min prior to the single dose of streptozotocin (65 mg/kg, i.p.). Renal I/R were performed in both diabetic and normal rats. Results: The lipid peroxidation, xanthine oxidase activity, and nitric oxide levels were significantly increased after I/R in diabetic rats compared to I/R in normal rats. Antioxidant enzymes such as glutathione, superoxide dismutase, catalase, and glutathione peroxidase were significantly reduced after I/R in diabetic rats compared to normal rats. Sitaglipten treatment significantly normalized these biochemical parameters compared to diabetic I/R rats. Serum TNF-α level and myeloperoxidase activity were also significantly normalized after administration of sitaglipten. Furthermore, treatment with sitaglipten (10 mcg/kg) had preserved the normal morphology of the kidney compared to I/R performed in diabetic rats. Conclusion: Sitaglipten protects exaggerated renal I/R injury in type 2 DM. These findings have major implication in the treatment of ischemic injury that is prone to develop in DM.

Share and Cite:

Mohamed, M. , Hammadi, S. and Hamid, M. (2014) The Possible Role of the Incretin Enhancer Sitaglipten, in Renal Ischemic Reperfusion Injury in Type 2 Diabetes Mellitus. Open Journal of Endocrine and Metabolic Diseases, 4, 181-196. doi: 10.4236/ojemd.2014.47018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Maisonneuve, P., Agodoa, L., Gellert, R., et al. (2000) Distribution of Primary Renal Diseases Leading to End-Stage Renal Failure in the United States, Europe, and Australia/New Zealand: Results from an International Comparative Study. American Journal of Kidney Disease, 35, 157-165.
http://dx.doi.org/10.1016/S0272-6386(00)70316-7
[2] Hokama, J.Y., Ritter, L.S., Gorman, G.D., Cimetta, A.D., Copeland, J.G. and McDonagh, P.F. (2000) Diabetes Enhances Leukocyte Accumulation in the Coronary Microcirculation Early in Reperfusion Following Ischemia. Journal of Diabetes Complication, 14, 96-107. http://dx.doi.org/10.1016/S1056-8727(00)00068-4
[3] Yellon, D.M. and Baxter, G.F. (2000) Protecting the Ischaemic and Reperfused Myocardium in Acute Myocardial Infarction: Distant Dream or Near Reality? Heart, 83, 381-387.
http://dx.doi.org/10.1136/heart.83.4.381
[4] Yokoyama, H., Okudaira, M., Otani, T., et al. (2000) Higher Incidence of Diabetic Nephropathy in Type 2 than in Type 1 Diabetes in Early-Onset Diabetes in Japan. Kidney International, 58, 302-311. http://dx.doi.org/10.1046/j.1523-1755.2000.00166.x
[5] Basireddy, M., Isbell, T.S., Teng, X., Patel, R.P. and Agarwal, A. (2006) Effects of Sodium Nitrite on Ischemia-Reperfusion Injury in the Rat Kidney. American Journal of Physiology-Renal Physiology, 290, F779-F786. http://dx.doi.org/10.1152/ajprenal.00334.2005
[6] Ysebaert, D.K., De-Greef, K.E., De-Beuf, A., et al. (2004) T Cells as Mediators in Renal Ischemia/Reperfusion Injury. Kidney International, 66, 491-496. http://dx.doi.org/10.1111/j.1523-1755.2004.761_4.x
[7] Altunoluk, B., Soylemez, H., Oguz, F., Turkmen, E. and Fadillioglu, E. (2006) An Angiotensin-Converting Enzyme Inhibitor, Zofenopril, Prevents Renal Ischemia/Reperfusion Injury in Rats. Annals of Clinical & Laboratory Science, 36, 326-332.
[8] Bolen, S., Feldman, L., Vassy, J., et al. (2007) Systematic Review: Comparative Effectiveness and Safety of Oral Medications for Type 2 Diabetes Mellitus. Annals of Internal Medicine, 147, 386-399.
[9] Taylor, S.I., Accili, D. and Imai, Y. (1994) Insulin Resistance or Insulin Deficiency. Which Is the Primary Cause of NIDDM? Diabetes, 43, 735-740. http://dx.doi.org/10.2337/diab.43.6.735
[10] Cavaghan, M.K., Ehrmann, D.A. and Polonsky, K.S. (2000) Interactions between Insulin Resistance and Insulin Secretion in the Development of Glucose Intolerance. Journal of Clinical Investigation, 106, 329-333. http://dx.doi.org/10.1172/JCI10761
[11] Holman, R.R. (2006) Long-Term Efficacy of Sulfonylureas: A United Kingdom Prospective Diabetes Study Perspective. Metabolism, 55, S2-S5. http://dx.doi.org/10.1016/j.metabol.2006.02.006
[12] Stahl, M. and Berger, W. (1999) Higher Incidence of Severe Hypoglycaemia Leading to Hospital Admission in Type 2 Diabetic Patients Treated with Long-Acting versus Short-Acting Sulphonylureas. Diabetic Medicine, 16, 586-590. http://dx.doi.org/10.1046/j.1464-5491.1999.00110.x
[13] Holst, J.J. (1997) Enteroglucagon. Annual Review of Physiology, 59, 257-271.
http://dx.doi.org/10.1146/annurev.physiol.59.1.257
[14] MacDonald, P.E., El-Kholy, W., Riedel, M.J., Salapatek, A.M., Light, P.E. and Wheeler, M.B. (2002) The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion. Diabetes, 519, S434-S442.
[15] Kieffer, T.J., McIntosh, C.H. and Pederson, R.A. (1995) Degradation of Glucose-Dependent Insulinotropic Polypeptide and Truncated Glucagon-Like Peptide 1 in Vitro and in Vivo by Dipeptidyl Peptidase IV. Endocrinology, 136, 3585-3596.
[16] Raz, I., Hanefeld, M., Xu, L., Caria, C., Williams-Herman, D. and Khatami, H. (2006) Efficacy and Safety of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy in Patients with Type 2 Diabetes Mellitus. Diabetologia, 49, 2564-2571. http://dx.doi.org/10.1007/s00125-006-0416-z
[17] Rosenstock, J., Baron, M.A., Dejager, S., Mills, D. and Schweizer, A. (2007) Comparison of Vildagliptin and Rosiglitazone Monotherapy in Patients with Type 2 Diabetes: A 24-Week, Double-Blind, Randomized Trial. Diabetes Care, 30, 217-223. http://dx.doi.org/10.2337/dc06-1815
[18] Rosenstock, J., Sankoh, S. and List, J.F. (2008) Glucose-Lowering Activity of the Dipeptidyl Peptidase-4 Inhibitor Saxagliptin in Drug-Naive Patients with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 10, 376-386. http://dx.doi.org/10.1111/j.1463-1326.2008.00876.x
[19] Bose, A.K., Mocanu, M.M., Carr, R.D., Brand, C.L. and Yellon, D.M. (2005) Glucagon-Like Peptide 1 Can Directly Protect the Heart against Ischemia/Reperfusion Injury. Diabetes, 54, 146-151.
http://dx.doi.org/10.2337/diabetes.54.1.146
[20] Atsuo, T., Akiko, M.Y., Ryosuke, N., Yuka, S., Masahiko, H. and Masayuki, S. (2009) Antihyperglycemic Effects of ASP8497 in Streptozotocin-Nicotinamide Induced Diabetic Rats: Comparison with Other Dipeptidyl Peptidase-IV Inhibitors. Pharmacological Reports, 61, 899-908.
http://dx.doi.org/10.1016/S1734-1140(09)70147-1
[21] Bose, A.K., Mocanu, M.M., Carr, R.D. and Yellon, D.M. (2005) Glucagon Like Peptide-1 Is Protective against Myocardial Ischemia/Reperfusion Injury When Given Either as a Preconditioning Mimetic or at Reperfusion in An Isolated Rat Heart Model. Cardiovascular Drugs and Therapy, 19, 9-11.
http://dx.doi.org/10.1007/s10557-005-6892-4
[22] Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., et al. (1998) Experimental NIDDM: Development of a New Model in Adult Rats Administered Streptozotocin and Nicotinamide. Diabetes, 47, 224-229. http://dx.doi.org/10.2337/diab.47.2.224
[23] Slater, T.F. and Sawyer, B.C. (1971) The Stimulatory Effects of Carbon Tetrachloride and Other Halogenoalkanes or Peroxidative Reactions in Liver Fractions in Vitro. Biochemical Journal, 123, 805-814.
[24] Moran, M.S., Depierre, J.W. and Mannervik, B. (1979) Levels of Glutathione, Glutathione Reductase and Glutathione S-Transferase Activities in Rat Lung and Liver. Biochimica et Biophysica Acta (BBA), General Subjects, 582, 67-78. http://dx.doi.org/10.1016/0304-4165(79)90289-7
[25] Misra, H.P. and Fridovich, I. (1972) The Role of Superoxide Anion in the Autooxidation of Epinephrine and a Simple Assay of SOD. Journal of Biological Chemistry, 247, 3170-3175.
[26] Aebi, H. (1984) Oxido Reductases Acting on Groups Other Than CHOH: Catalase. In: Colowick, S.P., Kaplan, N.O. and Packer, L., Eds., Methods in Enzymology, Academic Press, London, Vol. 105, 121-125.
[27] Paglia, D.E. and Valentine, W.N. (1967) Studies on the Quantitative and Qualitative Characterization of Erythrocyte Peroxidase. Journal of Laboratory and Clinical Medicine, 2, 158-169.
[28] Prajda, N. and Weber, G. (1975) Malign Transformation-Linked Imbalance: Decreased Xanthine Oxidase Activity in Hepatomas. FEBS Letters, 59, 245-249. http://dx.doi.org/10.1016/0014-5793(75)80385-1
[29] Lepoivre, G., Iwanejko, J., Dembinska-Kiec, A., Pankiewicz, J., Wanat, A., Anna, P., et al. (1998) Determination of Nitrite/Nitrate in Human Biological Material by the Simple Griess Reaction. Clinica Chimica Acta, 274, 177-188. http://dx.doi.org/10.1016/S0009-8981(98)00060-6
[30] Wei, H. and Frenkel, K. (1993) Relationship of Oxidative Events and DNA Oxidation in SENCAR Mice to in Vivo Promoting Activity of Phorbol Ester-Type Tumor Promoters. Carcinogenesis, 14, 1195-1201. http://dx.doi.org/10.1093/carcin/14.6.1195
[31] Jablonski, P., Howden, B., Rae, D., Birrel, C., Marshall, V. and Tange, J. (1983) An Experimental Model for Assessment of Renal Recovery from Warm Ischaemia. Transplantation, 35, 198-204.
http://dx.doi.org/10.1097/00007890-198303000-00002
[32] Hill, B.A. (1971) Principles of Medical Statistics. 9th Edition, Lancet Limited Publications, London, 147, 383.
[33] Umrani, D.N. and Goyal, R.K. (2003) Fenoldopam Treatment Improves Peripheral Insulin Sensitivity and Renal Function in STZ-Induced Type 2 Diabetic Rats. Clinical and Experimental Hypertension, 25, 221-233. http://dx.doi.org/10.1081/CEH-120020392
[34] Chen, H., Brahmbhatt, S., Gupta, A. and Sharma, A.C. (2005) Duration of Streptozotocin-Induced Diabetes Differentially Affects p38-Mitogen-Activated Protein Kinase (MAPK) Phosphorylation in Renal and Vascular Dysfunction. Cardiovascular Diabetology, 4, 3. http://dx.doi.org/10.1186/1475-2840-4-3
[35] Kuhad, A. and Chopra, K. (2009) Attenuation of Diabetic Nephropathy by Tocotrienol: Involvement of NFkB Signaling Pathway. Life Science, 84, 296-301. http://dx.doi.org/10.1016/j.lfs.2008.12.014
[36] Yousef, W.M., Omar, A.H., Ghanayeem, N.M., Waheed, M.M.A. and Morsey, M.D. (2005) Effect of Some Calcium Channel Blockers in Experimentally Induced Diabetic Nephropathy in Rats. Indocrinology, Metabolism and Diabetes Journal, 14, 39-49.
[37] Sener, G., Tugtepe, H., Yuksel, M., Cetinel, S., Gedik, N. and Yegen, B.C. (2006) Resveratrol Improves Ischemia/Reperfusion-Induced Oxidative Renal Injury in Rats. Archives of Medical Research, 37, 822-829. http://dx.doi.org/10.1016/j.arcmed.2006.04.003
[38] Tugtepe, H., Sener, G., Biyikli, N.K., Yuksel, M., Cetinel, S., Gedik, N. and Yegen, B.C. (2007) The Protective Effect of Oxytocin on Renal Ischemia/Reperfusion Injury in Rats. Regulatory Peptides, 140, 101-108. http://dx.doi.org/10.1016/j.regpep.2006.11.026
[39] Satoh, J., Yagihashi, S. and Toyota, T. (2003) The Possible Role of Tumor Necrosis Factor-Alpha in Diabetic Polyneuropathy. Experimental Diabesity Research, 4, 65-71.
http://dx.doi.org/10.1155/EDR.2003.65
[40] Bonventre, J.V. and Zuk, A. (2004) Ischemic Acute Renal Failure: An Inflammatory Disease? Kidney International, 66, 480-485. http://dx.doi.org/10.1111/j.1523-1755.2004.761_2.x
[41] Liu, R., Bal, H.S., Desta, T., Behl, Y. and Graves, D.T. (2006) Tumor Necrosis Factor-α Mediates Diabetes-Enhanced Apoptosis of Matrix-Producing Cells and Impairs Diabetic Healing. The American Journal of Clinical Pathology, 168, 757-764. http://dx.doi.org/10.2353/ajpath.2006.050907
[42] Yamagishi, S., Fukami, K., Ueda, S. and Okuda, S. (2007) Molecular Mechanisms of Diabetic Nephropathy and It’s Therapeutic Intervention. Current Drug Targets, 8, 952-959.
http://dx.doi.org/10.2174/138945007781386884
[43] Koike, N., Takamura, T. and Kaneko, S. (2007) Induction of Reactive Oxygen Species from Isolated Rat Glomeruli by Protein Kinase C Activation and TNF-α Stimulation, and Effects of a Phosphodiesterase Inhibitor. Life Science, 80, 1721-1728.
http://dx.doi.org/10.1016/j.lfs.2007.02.001
[44] Yeboah, M.M., Xue, X., Duan, B., Ochani, M., Tracey, K.J., Susin, M., et al. (2008) Cholinergic Agonists Attenuate Renal Ischemia-Reperfusion Injury in Rats. Kidney International, 74, 62-69.
http://dx.doi.org/10.1038/ki.2008.94
[45] Jitendra, D.V., Navin, R.S., Yagnik, S.B. and Nurudin, P.J. (2010) Exaggerated Liver Injury Induced by Renal Ischemia Reperfusion in Diabetes: Effect of Exenatide. The Saudi Journal of Gastroenterology, 16, 174-180. http://dx.doi.org/10.4103/1319-3767.65187
[46] Zheng, L., Du, Y., Miller, C., et al. (2007) Critical Role of Inducible Nitric Oxide Synthase in Degeneration of Retinal Capillaries in Mice with Streptozotocin-Induced Diabetes. Diabetologia, 50, 1987-1996.
[47] Yagmurca, M., Erdogan, H., Iraz, M., Songur, A., Ucar, M. and Fadillioglu, E. (2004) Caffeic Acid Phenethyl Ester as a Protective Agent against Doxorubicin Nephrotoxicity in Rats. Clinica Chimica Acta, 348, 27-34. http://dx.doi.org/10.1016/j.cccn.2004.03.035
[48] Matsuyama, M., Yoshimura, R., Hase, T., Kawahito, Y., Sano, H. and Nakatani, T. (2005) Study of Cyclooxygenase-2 in Renal Ischemia-Reperfusion Injury. Transplantation Proceeding, 37, 370-372. http://dx.doi.org/10.1016/j.transproceed.2004.12.246
[49] Moursi, M., Rising, C.L., Zelenock, G.B. and D’Alecy, L.G. (1997) Dextrose Administration Exacerbates Acute Renal Ischemic Damage in Anesthetized Dogs. Archives of Surgery, 122, 790-794. http://dx.doi.org/10.1001/archsurg.1987.01400190056011
[50] Ferreira, L., Teixeira-De-Lemos, E., Pinto, F., Parada, B., Mega, C., Vala, H., et al. (2010) Effects of Sitagliptin Treatment on Dysmetabolism, Inflammation, and Oxidative Stress in an Animal Model of Type 2 Diabetes (ZDF Rat). Mediators of Inflammation, 2010, Article ID: 592760.
http://dx.doi.org/10.1155/2010/592760
[51] Matsui, T., Nishino, Y., Takeuchi, M. and Yamagishi, S.I. (2011) Vildagliptin Blocks Vascular Injury in Thoracic Aorta of Diabetic Rats by Suppressing Advanced Glycation End Product-Receptor Axis. Pharmacological Research, 63, 383-388. http://dx.doi.org/10.1016/j.phrs.2011.02.003
[52] Li, L., El-Kholy, W., Rhodes, C.J. and Brubaker, P.L. (2005) Glucagon-Like Peptide-1 Protects Beta Cells from Cytokine-Induced Apoptosis and Necrosis: Role of Protein Kinase B. Diabetologia, 489, 1339-1349. http://dx.doi.org/10.1007/s00125-005-1787-2
[53] Zhang, X., Wang, Z., Huang, Y. and Wang, J. (2011) Effects of Chronic Administration of Alogliptin on the Development of Diabetes and β-Cell Function in High Fat Diet/Streptozotocin Diabetic Mice. Diabetes, Obesity and Metabolism, 13, 337-347.
http://dx.doi.org/10.1111/j.1463-1326.2010.01354.x

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.