Percoll Gradient Optimization for Blood CD133+ Stem Cell Recovery


Circulating CD133+ stem cells from the peripheral blood have been shown to be able to differentiate into numerous cell lineages. However, adults have only a small number of these circulating stem cells. The aim of the present study was to assess a new isolation and enrichment technique for CD133+ stem cells from peripheral blood with the use of Percoll density gradients. Our results demonstrated the presence of two large mononuclear bands when whole blood was centrifuged with 48% and 50% Percoll concentrations. Flow cytometric analysis (FACS) revealed a major CD133+ enrichment at the 48% Percoll concentration in one of the two bands. Further culture of these cells resulted in the formation of multiple colony-forming units. Our results suggest an advantage from using a simple Percoll gradient for successful CD133+ cell recovery, which could aid in differentiation and transplantation protocols.

Share and Cite:

López-Franco, R. , Moreno-Cuevas, J. and González-Garza, M. (2014) Percoll Gradient Optimization for Blood CD133+ Stem Cell Recovery. Stem Cell Discovery, 4, 61-66. doi: 10.4236/scd.2014.43007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ballas, C.B., Zielske, S.P. and Gerson, S.L. (2002) Adult Bone Marrow Stem Cells for Cell and Gene Therapies: Implications for Greater Use. Journal of Cellular Biochemistry, Supplement, 38, 20-28.
[2] Pereira, R.F., O’Hara, M.D., Laptev, A.V., Haldford, K.W., Pollard, M.D., Class, R., Simon, D., Livezey, K. and Prockop, D.J. (1998) Marrow Stromal Cells as a Source of Progenitor Cells for Nonhematopoietic Tissues in Transgenic Mice with a Phenotype of Osteogenesis Imperfecta. Proceedings of the National Academy of Sciences of the United States of America, 95, 1142-1147.
[3] Hofstetter, C.P., Schwarz, E.J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D.J. and Olson, L. (2002) Marrow Stromal Cells Form Guiding Strands in the Injured Spinal Cord and Promote Recovery. Proceedings of the National Academy of Sciences of the United States of America, 99, 2199-2204.
[4] Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. and Verfaillie, C.M. (2002) Pluripotency of Mesenchymal stem Cells Derived from Adult Marrow. Nature, 418, 41-49.
[5] Pereira, R.F., Haldford, K.W., O’Hara, M.D., Leeper, D.B., Sokolov, B.P., Pollard, M.D., Bagasra, O. and Prockop, D.J. (1995) Cultures Adherent Cells from Marrow Can Serve as Long-Lasting Precursor Cells for Bone, Cartilage, and Lung in Irradiated Mice. Proceedings of the National Academy of Sciences of the United States of America, 92, 4857-4861.
[6] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147.
[7] Zvaifler, N.J., Marinova-Mutafchieva, L., Adams, G., Edwards, C.J., Moss, J., Burger, J.A. and Maini, R.N. (2002) Mesenchymal Precursor Cells in the Blood Of Normal Individuals. Arthritis Research, 2, 477-488.
[8] Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., D?bert, N., Grünwald, F., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S. and Zeiher, A.M. (2002) Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106, 3009-3017.
[9] Balducci, E., Azzarello, G., Valenti, M.T., Capuzzo, G.M., Pappagallo, G.L., Pilotti, I., Ausoni, S., Bari, M., Rosetti, F., Sartori, D., Ciappa, A., Porcellini, A. and Vinante, O. (2003) The Impact of Progenitor Enrichment, Serum, and Cytokines on the Ex Vivo Expansion of Mobilized Peripheral Blood Stem Cells: A Controlled Trial. Stem Cells, 21, 33-40.
[10] Yin, A.H., Miraglia, S., Zanjani, E.D., Almeida-Porada, G., Ogawa, M., Leary, A.G., Olweus, J., Kearney, J. and Buck, D.W. (1997) AC133, a Novel Marker for Human Hematopoietic Stem and Progenitor Cells. Blood, 90, 5002-5012.
[11] Matsumoto, K., Yasui, K., Yamashita, N., Horie, Y., Yamada, T., Tani, Y., Shibata, H. and Nakano, T. (2000) In Vitro Proliferation Potential of AC133 Positive Cells in Peripheral Blood. Stem Cells, 18, 196-203.
[12] Gordon, P.R., Leimig, T., Babarin-Dorner, A., Houston, J., Holladay, M., Mueller, I., Geiger, T. and Handgretinger, R. (2003) Large-Scale Isolation of CD133+ Progenitor Cells from G-CSF Mobilized Peripheral Blood Stem Cells. Bone Marrow Transplantation, 31, 17-22.
[13] Kobari, L., Giarratana, M.C., Pflumio, F., Izac, B., Coulombel, L. and Douay, L. (2001) CD133+ Cell Selection Is an Alternative to CD34+ Cell Selection for Ex Vivo Expansion of Hematopoietic Stem Cells. Journal of Hematotheray and Stem Cell Research, 10, 273-281.
[14] Kuci, S., Wessels, J.T., Buhring, H.J., Schilbach, K., Schumm, M., Seitz, G., Loffler, J., Bader, P., Schlegel, P.G., Niethammer, D. and Handgretinger, R. (2003) Identification of a Novel Class of Human Adherent CD34-Stem Cells That Give Rise to SCID-Repopulating Cells. Blood, 101, 869-876.
[15] Koehl, U., Zimmermann, S., Esser, R., Sorensen, J., Gruttner, H.P., Duchscherer, M., Seifried, E., Klingebiel, T. and Schwabe, D. (2002) Autologous Transplantation of CD133 Selected Hematopoietic Progenitor Cells in a Pediatric Patient with Relapsed Leukemia. Bone Marrow Transplantation, 29, 927-930.
[16] Martinez, H.R., Gonzalez Garza, M.T., Moreno Cuevas, J.E., Caro Osorio, E., Gutierrez, E. and Segura, J.J. (2009) Stem-Cell Transplantation into the Frontal Motor Cortex in Amyotrophic Lateral Sclerosis Patients. Cytoyherapy, 11, 26-34.
[17] Gonzalez Garza, M.T., Moreno Cuevas, J.E., Martinez, H.R., Caro Osorio, E., Cruz-Vega, D.E. and Hernandez-Torre, M. (2013) Differentiation of CD133+ Stem Cells from Amyotrophic Lateral Sclerosis Patients into Neuron-Like Cells. Stem Cell Translational Medicine, 2, 129-135.
[18] Kato, M., Kato, Y. and Sugiyama, Y. (1999) Mechanism of the Upregulation of Erythropoietin-Induced Uptake Clearance by the Spleen. American Journal of Physiology, 276, E887-E895.
[19] Cowland, J.B. and Borregaard, N. (1999) Isolation of Neutrophil Precursors from Bone Marrow for Biochemical and Transcriptional Analysis. Journal of Immunology Methods, 232, 191-200.
[20] Li, C.D., Zhang, W.Y., Li, H.L., Jiang, X.X., Zhang, Y., Tang, P. and Mao, N. (2005) Mesenchymal Stem Cells Derived from Human Placenta Suppress Allogeneic Umbilical Cord Blood Lymphocyte Proliferation. Cell Research, 15, 539-547.
[21] Pertoft, H. (2000) Fractionation of Cells and Subcellular Particles with Percoll. Journal of Biochemical and Biophysical Methods, 44, 1-30.
[22] Lazarus, H.M., Haynesworth, S.E., Gerson, S.L., Rosenthal, N.S. and Caplan, A.I. (1995) Ex Vivo Expansion and Subsequent Infusion of Human Bone Marrow-Derived Stromal Progenitor Cells (Mesenchymal Progenitor Cells): Implications for Therapeutic Use. Bone Marrow Transplantation, 16, 557-564.
[23] Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P. and Deliliers, G.L. (2001) Differentiation and Expansion of Endothelial Cells from Human Bone Marrow CD133(+) Cells. Journal of Haematology, 115, 186-194.
[24] Sawamoto, K., Nakao, N., Kakishita, K., Ogawa, Y., Toyama, Y., Yamamoto, A., Yamaguchi, M., Mori, K., Goldman, S.A., Itakura, T. and Okano, H. (2001) Generation of Dopaminergic Neurons in the Adult Brain from Mesencephalic Precursor Cells Labeled with a Nestin-GFP Transgene. Journal of Neuroscience, 21, 3895-3903.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.