[1]
|
Mok, M.C. (1994) Cytokinin and Plant Development—An Overview. In: Mok, D.W.S. and Mokeds, M.C., Eds., Cytokinin: Chemistry, Activity and Function, CRC Press, Boca Raton, 155-166.
|
[2]
|
Skoog, F. (1994) A Personal History of Cytokinin and Plant Hormone Research. In: Mok, D.W.S. and Mokeds, M.C., Eds., Cytokinin: Chemistry, Activity and Function, CRC Press, Boca Raton, 1-14.
|
[3]
|
Werner, T., Motyka, V., Strnd, M. and Schmulling, T. (2001) Regulation of Plant Growth by Cytokinin. Proceedings of the National Academy of Science of the United States of America, 98, 10487-10492. http://dx.doi.org/10.1073/pnas.171304098
|
[4]
|
Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. and Schmulling, T. (2003) Cytokinin-Deficient Transgenic Arabidopsis Plants Showed Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell, 15, 2532-2550. http://dx.doi.org/10.1105/tpc.014928
|
[5]
|
Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnd, M., Kramer, U. and Schmulling, T. (2010) Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco. Plant Cell, 22, 3905-3920. http://dx.doi.org/10.1105/tpc.109.072694
|
[6]
|
Kyozuka, J. (2009) Control of Shoot and Root Meristem Function by Cytokinin. Current Opinion in Plant Biology, 10, 442-446. http://dx.doi.org/10.1016/j.pbi.2007.08.010
|
[7]
|
Kyozuka, J., Tokunaga, H. and Yoshida, A. (2014) Control of Grass Inflorescence Form by the Fine-Tuning of Meristem Phase Change. Current Opinion in Plant Biology, 17, 110-115. http://dx.doi.org/10.1016/j.pbi.2013.11.010
|
[8]
|
Holt, A.L., van Haperen, J.M.A., Groot, E.P. and Laux, T. (2014) Signaling in Shoot and Flower Meristems of Arabidopsis thaliana. Current Opinion in Plant Biology, 17, 96-102. http://dx.doi.org/10.1016/j.pbi.2013.11.011
|
[9]
|
Sakamoto, T., Sakakibara, H., Kojima, M., Yamamaoto, Y., Nagasaki, H., Inukai, Y., Sato, Y. and Matsuoka, M. (2006) Ectopic Expression of KNOTTED-Like Homeobox Protein Induces Expression of Cytokinin Biosynthesis Genes in Rice. Plant Physiology, 142, 54-62. http://dx.doi.org/10.1104/pp.106.085811
|
[10]
|
Ikeda, K., Nagasawa, N. and Nagato, Y. (2005) ABERRANT PANICLE ORGANIZATION 1 Temporally Regulates Meristem Identity in Rice. Developmental Biology, 285, 349-360. http://dx.doi.org/10.1016/j.ydbio.2005.03.016
|
[11]
|
Ikeda-Kawakatsu, K., Maekawa, M., Izawa, T., Itoh, J. and Nagato, Y. (2005) ABBERANT PANICLE ORGANIZATION 2/RFL, the Rice Ortholog of Arabidopsis LEAFY, Suppress the Transition from Inflorescence Meristem to Floral Meristem through Interaction with APO1. Plant Journal, 69, 168-180. http://dx.doi.org/10.1111/j.1365-313X.2011.04781.x
|
[12]
|
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Naganuma, Y. and Kyozuka, J. (2012) Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of three AP-1/FUL-Like MADS Box Genes and PAP2, a SEPALLATA MADS Box Gene. Plant Cell, 24, 1848-1859. http://dx.doi.org/10.1105/tpc.112.097105
|
[13]
|
Liu, C., Teo, Z.W., Bi, Y., Song, S., Xi, W., Yang, X., Yin, Z. and Yu, H. (2013) A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 24, 612-622. http://dx.doi.org/10.1016/j.devcel.2013.02.013
|
[14]
|
Mok, D.W.S. and Mokeds, M.C. (1994) Cytokinins: Chemistry, Activity, and Function. CRC Press, Inc., Boca Raton.
|
[15]
|
Mok, D.W.S. and Mok, D.C. (2001) Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118. http://dx.doi.org/10.1146/annurev.arplant.52.1.89
|
[16]
|
Sakakibara, H. (2006) Cytokinins: Activity, Biosynthesis and Translocation. Annual Review of Plant Biology, 57, 431-449. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105231
|
[17]
|
Kojima, M., Kamada-Nobusada, T., Komatsu, H., Takei, K., Kuroha, T., Mizutani, M., Ashikari, M., Ueguchi-Tanaka, M., Matsuoka, M., Suzuki, K. and Sakakibara, H. (2012) Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography-Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa. Plant & Cell Physiology, 50, 1201-1214. http://dx.doi.org/10.1093/pcp/pcp057
|
[18]
|
Murai, N., Armstrong, D.J. and Skoog, F. (1975) Incorporation of Mevalonic Acid into Ribosylzeatin in Tobacco Callus RNA Preparations. Plant Physiology, 55, 853-858. http://dx.doi.org/10.1104/pp.55.5.853
|
[19]
|
Murai, N., Skoog, F., Doyle, M.E. and Hanson, R.S. (1980) Relationship between Cytokinin Production, Presence of Plasmids, and Fasciation Caused by Strains of Corynebacterium fascians. Proceedings of the National Academy of Science of the United States of America, 77, 619-623.
|
[20]
|
Kasahara, H., Takei, K., Ueda, N., Hishiyama, S., Yamaya, T., Kamiya, Y., Yamaguchi, S. and Sakakibara, H. (2004) Distinct Isoprenoid Origins of cis- and trans-Zeatinbiosyntheses in Arabidopsis. Journal of Biological Chemistry, 279, 14049-14054. http://dx.doi.org/10.1074/jbc.M314195200
|
[21]
|
Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G. and Kakimoto, T. (2006) Roles of Arabidopsis ATP/ADP Isopentenyltransferases and tRNAiso Pentynyltrasferases in Cytokinin Biosynthesis. Proceedings of the National Academy of Science of the United States of America, 103, 16598-16603. http://dx.doi.org/10.1073/pnas.0603522103
|
[22]
|
Hashizume, T., Suye, S. and Sugiyama, T. (1982) Isolation and Identification of cis-Zeatin Riboside from Tubers of Sweet Potato (Ipomoea batatas L.). Agricultural and Biological Chemistry, 46, 663-665. http://dx.doi.org/10.1271/bbb1961.46.663
|
[23]
|
Nicander, B., Bjorkman, P.O. and Tillberg, E. (1995) Identification of an N-Glucoside of cis-Zeatin from Potato Tuber Sprouts. Plant Physiology, 109, 513-516.
|
[24]
|
Emery, R.J.N., Leport, L., Barton, J.E., Turner, N.C. and Atkin, C.A. (2008) cis-Isomers of Cytokinins Predominate in Chickpea Seeds throughout Their Development. Plant Physiology, 117, 1515-1523. http://dx.doi.org/10.1104/pp.117.4.1515
|
[25]
|
Quesnelle, P.E. and Emery, R.J.N. (2007) cis-Cytokinins That Predominate in Pisum sativum during Early Embryogenesis will Accelerate Embryo Growth in Vitro. Canadian Journal of Botany, 85, 91-103. http://dx.doi.org/10.1139/b06-149
|
[26]
|
Stirk, W.A., Novák, O., Václaviková, K., Tarkowski, P., Strnad, M. and van Staden, J. (2008) Spatial and Temporal Changes in Endogenous Cytokinins in Developing Pea Roots. Planta, 227, 1279-1289. http://dx.doi.org/10.1007/s00425-008-0699-z
|
[27]
|
Martin, R.C., Mok, M.C., Habben, J.E. and Mok, D.W.S. (2001) A Maize Cytokinin Gene Encoding an O-Glucosyl-transferase Specific to cis-Zeatin. Proceedings of the National Academy of Science of the United States of America, 98, 5922-5926. http://dx.doi.org/10.1073/pnas.101128798
|
[28]
|
Veach, Y.K., Martin, R.C., Mok, D.W.S., Malbeck, J., Vankova, R. and Mok, M.C. (2003) O-Glycosylation of cis-Zeatin in Maize. Characterization of Genes, Enzymes, and Endogenous Cytokinins. Plant Physioogy, 131, 1374-1380. http://dx.doi.org/10.1104/pp.017210
|
[29]
|
Yonekura-Sakakibara, K., Kojima, M., Yamaya, T. and Sakakibara, H. (2004) Molecular Characterization of Cytokinin-Responsive Histidine Kinases in Maize. Differential Ligand Preferences and Response to cis-Zeatin. Plant Physiology, 134, 1654-1651. http://dx.doi.org/10.1104/pp.103.037176
|
[30]
|
Gajdosová, S., Spíchal, L., Kamínek, M., Hoyerová, K., Novák, O., Dobrev, P.I., Galuszka, P., Klíma, P., Gaudinová, A., Zizková, E. Hanus, J., Dancák, M., Trávnicek, B., Pesek, B., Krupicka, M., Vanková, R., Strnad, M. and Motyka, V. (2011) Distribution, Biological Activities, Metabolism, and the Conceivable Function of cis-Zeatin-Type Cytokinins in Plants. Journal of Experimental Botany, 62, 2827-2840. http://dx.doi.org/10.1093/jxb/erq457
|
[31]
|
Leonard, N.J., Hecht, S.M., Skoog, F. and Schmitz, R.Y. (1969) Cytokinins: Synthesis, Mass Spectra, and Biological Activity of Compounds Related to Zeatin. Proceedings of the National Academy of Science of the United States of America, 63, 175-182. http://dx.doi.org/10.1073/pnas.63.1.175
|
[32]
|
Mok, M.C., Mok, D.W.C. and Armstrong, D.J. (1978) Differential Cytokinin Structure-Activity Relationships in Phaseolus. Plant Physiology, 61, 72-75. http://dx.doi.org/10.1104/pp.61.1.72
|
[33]
|
Kudo, T., Makita, N., Kojima, M., Tokunaga, H. and Sakakibara, H. (2012) Cytokinin Activity of cis-Zeatin and Phenotypic Alteration Induced by Overexpression of Putative cis-Zeatin-O-Glucosyltransferase in Rice. Plant Physiology, 160, 319-331. http://dx.doi.org/10.1104/pp.112.196733
|
[34]
|
Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T. and Mizuno, T. (2001) The Arabidopsis AHK4 Histidine Kinase Is a Cytokinin-Binding Receptor That Transduces Cytokinin Signals across the Membrane. Plant & Cell Physiology, 42, 1017-1023.
|
[35]
|
Rodo, A.P., Brugiere, N., Vankova, R., Malbeck, J., Olson, J.M., Haines, S.C., Martin, R.C., Habben, J.E., Mok, D.W. S. and Mok, M.C. (2008) Over-Expression of a Zeatin O-Glycosylation Gene in Maize Leads to Growth Retardation and Tasselseed Formation. Journal of Experimental Botany, 59, 673-2686.
|
[36]
|
Takei, K., Yamaya, T. and Sakakibara, H. (2004) Arabidopsis CYP35A1 and CYP735A2 Encode Cytokinin Hydrolases That Catalyze the Biosynthesis of trans-Zeatin. Journal of Biological Chemistry, 279, 41866-41872. http://dx.doi.org/10.1074/jbc.M406337200
|
[37]
|
Bassil, N.V., Mok, D.W. and Mok, M.C. (1993) Partial Purification of a cis-trans-Isomerase of Zeatin from Immature Seed of Phaseolusvulagaris L. Plant Physiology, 102, 867-872.
|
[38]
|
Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzymes, in Arabidopsis thaliana. Journal of Biological Chemistry, 276, 26405-26410. http://dx.doi.org/10.1074/jbc.M102130200
|
[39]
|
Kakimoto, T. (2001) Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferase. Plant & Cell Physiology, 42, 677-685. http://dx.doi.org/10.1093/pcp/pce112
|
[40]
|
Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of Cytokinin Biosynthetic Isopentenyltransferase Genes in Arabidopsis: Tissue Specificity and Regulation by Auxin, Cytokinin and Nitrate. The Plant Journal, 37, 128-138. http://dx.doi.org/10.1046/j.1365-313X.2003.01945.x
|
[41]
|
Brugierè, N., Humbert, S., Rizzo, N., Bohn, J. and Habben, J.E. (2008) A Member of the Maize Isopentenyl Transferase Gene Familly, Zea mays isopentenyl transferase 2 (ZmIPT2), Encodes a Cytokinin Biosyntetic Enzyme Expressed during Kernel Development. Plant Molecular Biology, 67, 215-229. http://dx.doi.org/10.1007/s11103-008-9312-x
|
[42]
|
Mok, D.W.S. and Martin, R.C. (1994) Cytokinin Metabolic Enzymes. In: Mok, D.W.S. and Mok, M.C., Eds., Cytokinin: Chemistry, Activity and Function, CRC Press, Boca Raton, 129-138.
|
[43]
|
Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H. and Kyozuka, J. (2007) Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature, 445, 652-655. http://dx.doi.org/10.1038/nature05504
|
[44]
|
Hanke, D.E. (2009) Cytokini Nriboside Phosphorylase from Potato and Its Use. WIPO Patent Application WO/2009/ 095715 (GB2009/050081).
|
[45]
|
Armstrong, D.J. (1994) Cytokinin Oxidase and Regulation of Cytokinin Degradation. In: Mok, D.W.S. and Mok, M.C., Eds., Cytokinin: Chemistry, Activity and Function, CRC Press, Boca Raton, 139-154.
|
[46]
|
Bilyeu, K., Cole, J.L., Laskey, J.G., Riekhof, W.R., Esparza, T.J., Krammer, M.D. and Morris, R.O. (2001) Molecular and Biochemical Characterization of a Cytokinin Oxidase from Maize. Plant Physiology, 125, 378-386. http://dx.doi.org/10.1104/pp.125.1.378
|
[47]
|
Bartrina, I., Otto, E., Strnad, M., Werner, T. and Schmülling, T. (2011) Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana. Plant Cell, 23, 69-80. http://dx.doi.org/10.1105/tpc.110.079079
|
[48]
|
Werner, T. and Schummülling, T. (2009) Cytokinin Action in Plant Development. Current Opinion in Plant Biology, 12, 527-538. http://dx.doi.org/10.1016/j.pbi.2009.07.002
|
[49]
|
Schmulling, T., Werner, T., Riefler, M., Krupkova, E. and Manns, I.B. (2003) Structure and Function of Cytokinin Oxidase/Dehydrogenase Gene of Maize, Rice, Arabidopsis and Other Species. Journal of Plant Research, 116, 241-252. http://dx.doi.org/10.1007/s10265-003-0096-4
|
[50]
|
Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H. and Matsuoka, M. (2005) Cytokinin Oxidase Regulates Rice Grain Production. Science, 309, 741-745. http://dx.doi.org/10.1126/science.1113373
|
[51]
|
Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M. and Lin, H.X. (2009) A Previously Unknown Zinc Finger Protein, DST, Regulates Drought and Salt Tolerance in Rice via Stomatal Aperture Control. Genes & Development, 23, 1805-1817. http://dx.doi.org/10.1101/gad.1812409
|
[52]
|
Li, S., Zao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhnag, J., Wang, J., Sun, J., Liu, Z., Feng, Y.Q., Yuan, L. and Lin, C. (2013) Rice Zinc Finger Protein DST Enhances Grain Production through Controlling Gn1a/OsCKX2 Expression. Proceedings of the National Academy of Science of the United States of America, 110, 3167-3172.
|
[53]
|
Huang, X.Z., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. (2009) Natural Variation at the DEP1 Locus Enhances Grain Yield in Rice. Nature Genetics, 41, 494-497. http://dx.doi.org/10.1038/ng.352
|
[54]
|
Sreenivasulu, N. and Schnurbusch, T. (2011) A Genetic Playground for Enhancing Grain Number in Cereals. Trends in Plant Science, 17, 91-101. http://dx.doi.org/10.1016/j.tplants.2011.11.003
|
[55]
|
Kuroha, T., Tokunaga, H., Kojima, M., Ueda, N., Ishida, T., Nagawa, S., Fukuda, H., Sugimoto, K. and Sakakibara, H. (2009) Functional Analyses of LONELY GUY Cytokinin-Activation Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. The Plant Cell, 21, 3152-3169. http://dx.doi.org/10.1105/tpc.109.068676
|