Modeling the Hydrological Dynamic of the Breeding Water Bodies in Barkedji’s Zone

Abstract

Temporary water bodies’ dynamics play an important role in the epidemiological chain-borne diseases such as Rift Valley fever as they are the main breeding habitats for mosquitoes. During the rainy season, hundreds of these temporary water bodies appear and grow in the Ferlo region (Senegal). The purpose of this research is to generate historical and future time series water levels and areas at three temporary ponds located in the environment and health observatory of Barkedji. A simple lumped hydrological model was developed for that purpose. It describes each pond watershed as three interconnected reservoirs: canopy, surface storage and soil storage and uses a linear relation to describe infiltration, percolation and baseflow (out of the soil reservoir). Given the depth of the water table in the region, percolation out of the soil surface is considered lost. Evapotraspiration was calculated using the Penman equation and withdraws water from the canopy and surface water reservoirs. Excess runoff from the soil storage is turned into runoff using a triangular unit hydrograph. The calibration was done using two years of hydrological and climatic data collected during the 2011 and 2012 rainy seasons. The calibration was successful and water level in the two ponds was simulated with a Root Mean Square Error (RMSE) of 11.2 to 15 cm. Because of the short duration of the observation, no validation could be done. Given the excellent agreement of the simulated and observed water levels during the calibration phase, the modeling exercise was considered to be successful. The developed models were used to generate historical time series of pond areas and correlate these to mosquitoes’ infestation in the region. Future time series of pond areas were also generated using downscaled outputs of three regional climate models from the AMMA ENSEMBLES experiment. The generated pond levels and areas are being used to assess the evolution of the disease in the next 40 years.

Share and Cite:

Bop, M. , Amadou, A. , Seidou, O. , Kébé, C. , Ndione, J. , Sambou, S. and Sanda, I. (2014) Modeling the Hydrological Dynamic of the Breeding Water Bodies in Barkedji’s Zone. Journal of Water Resource and Protection, 6, 741-755. doi: 10.4236/jwarp.2014.68071.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Molez, J.F., Diop, A., Gaye, O., Lemasson, J.J. and Fontenille, D. (2006) Malaria Morbidity in Barkedji, Village of Ferlo, in Senegal Sahelian Area. Bulletin de la Societe de Pathologie Exotique, 99,187-190.
[2] Thiongane, Y., Thonnon, J., Zeller, H., Lo, M.M., Faty, A., Diagne, F., Gonzalez, J., Akakpo, J.A., Fontenille, D. and Digoutte, J.P. (1998) Donnees Recentes de l’Epidemiologie de la Fievre de la Vallee du Rift (FVR) au Senegal. Bulletin de la Societe Medicale d’Afrique Noire de Langue Francaise, 1-6.
[3] Bicout, D.J. and Sabatier, P. (2003) Mapping Rift Valley Fever Vectors and Prevalence Using Rainfall Variations. Vector Borne and Zoonotic Diseases, 4, 33-42.
http://dx.doi.org/10.1089/153036604773082979
[4] Lancelot, R., Gonzalez, J.P., Le Guenno, B., Diallo, B.C., Gandega, Y. and et Guillaud, M. (1989) Epidemiologie Descriptive de la Fievre de la Vallee du Rift chez les Petits Ruminants au sud de la Mauritanie Apres L’hivernage 1988. Revue d’Elevage et de Medecine Veterinaire des Pays Tropicaux, 42, 485-491.
[5] Chevalier, V., Lancelot, R., Thiongane, Y., Sall, B. and Mondet, B. (2005) Incidence of Rift Valley Fever in Small Ruminants in the Ferlo Pastoral System (Senegal) during the 2003 Rainy Season. Emerging Infectious Diseases, 11, 1693-1700.
http://dx.doi.org/10.3201/eid1111.050193
[6] Ndione, J.A., Besancenot, J.P., Lacaux, J.P. and et Sabatier, P. (2003) Environnement et Epidemiologie de la Fievre de la Vallee du Rift (FVR) dans le Bassin Inferieur du Fleuve Senegal. Environnement, Risques et Sante, 2, 176-182.
[7] Chevalier, V., Mondet, B., Diaite, A., Lancelot, R., Fall, A.-G. and Poncon, N. (2004) Exposure of Sheep to Mosquito Bites: Possible Consequences for Transmission Risk of Rift Valley Fever in Senegal. Medical and Veterinary Entomology, 18, 247-255.
http://dx.doi.org/10.1111/j.0269-283X.2004.00511.x
[8] Bicout, D.J., Porphyre, T.J.-A. and Sabatier, P. (2004) Modelling Abondance of Aedes and Culex ssp in Rain Fed Pnds in Barkedji, Senegal. Proceedings of the 10th International Symposium on Veterinary Epidemiology and Economic.
www.sciquest.org.nz
[9] Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. and Lafaye, M. (2007) Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sensing of Environment, 106, 66-74.
www.elsevier.com/locate/rse
http://dx.doi.org/10.1016/j.rse.2006.07.012
[10] Ndione, J.A., Lacaux, J.P., Toure, Y., Vignolles, C., Fontanaz, D. and Lafaye, M. (2009) Mares Temporaires et Risques Sanitaires au Ferlo: Contribution de la Teledetection pour L’etude de la Fievre de la Vallee du Rift Entre Aout 2003 et Janvier 2004. Secheresse, 20, 153-160.
[11] Cisse, A., Bah, A., Drogoul, A., Cisse, A.T., Ndione, J.A., Kebe, C.M.F. and Taillandier, P. (2012) Un Modele à Base Dagents sur la Transmission et la Diffusion de la Fievre de la Vallee du Rift à Barkedji (Ferlo, Senegal). Studia Informatica Universalis, 77-97.
[12] Soti, V., Puech, C., Lo Seen, D., Bertran, A., Vignolles, C., Mondet, B., Dessay, N., et al. (2010) Thepotential for Remote Sensing and Hydrologic Modelling to Assess the Spatio-Temporal Dynamics of Ponds in the Ferlo Region (Senegal). Hydrology and Earth System Sciences, 14, 1449-1464.
[13] Porphyre, T., Bicout, D.J. and Sabatier, P. (2005) Modelling the Abundance of Mosquito Vectors versus Flooding Dynamics. Ecological Modelling, 183, 173-181.
http://dx.doi.org/10.1016/j.ecolmodel.2004.06.044
[14] Bop, M. (2008) Impact du Fonctionnement Hydrologique d’un Bassin Endoreique sur la Dynamique des Moustiques: Cas des mares de Barkedji. Memoire de DEA, Universite Cheikh Anta Diop.
[15] FAO (1999) Schema Directeur de la Zone Ecogeographique Sylvopastorale (Ferlo):Appui au Programme National de la Foresterie Rurale du Senegal,. 14-21.
[16] Bingham Le Houerou, H.N. (1988) Relationship between the Variability of Primary Production and the Variability of Annual Precipitation in World Arid Lands. Journal of Arid Environments, 1, 1-18.
[17] Pin-Diop, R., Toure, I., Lancelot, R., Ndiaye, M. and Chavernac, D. (2007) Remote Sensing and Geographic Information Systems to Predict the Density of Ruminants, Hosts of Rift Valley Fever Virus in the Sahel. Veterinaria Italiana Series, 42, 675-686.
[18] Martin-Rosales, W. and Leduc, C. (2003) Variability of the Dynamics of Temporary Pools in Semi-Arid Endoreic System (Southwestern Niger). Hydrology of Mediterranean and Semi-Arid Regions, 174-178.
[19] Paeth, H. (2011) Postprocessing of Simulated Precipitation for Impact Research in West Africa. Part I: Model Output Statistics for Monthly Data. Climate Dynamics, 36, 1321-1336.
http://dx.doi.org/10.1007/s00382-010-0760-z
[20] Soti, V., Puech, C., Lo Seen, D., Bertran, A., Vignolles, C., Mondet, B., Dessay, N., et al. (2012) Comuning Hydrology and Mosquitoes Populations Models to Identify the Drivers of Rift Valley Fever Emergence in Semi-Arid Regions of West Africa. PLOS Neglected Tropical Diseases, 6, e1795.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.