A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct

Abstract

A spectral method based on Hermite cubic splines expansions combined with a collocation scheme is used to develop a solution for the vector form integral S-model kinetic equation describing rarefied gas flows in cylindrical geometry. Some manipulations are made to facilitate the computational treatment of the singularities inherent to the kernel. Numerical results for the simulation of flows generated by pressure and thermal gradients, Poiseuille and thermal-creep problems, are presented.

Share and Cite:

Kamphorst, C. , Rodrigues, P. and Barichello, L. (2014) A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct. Applied Mathematics, 5, 1516-1527. doi: 10.4236/am.2014.510145.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Karniadakis, G., Beskok, A. and Aluru, N. (2005) Microflows and Nanoflows. Springer, New York.
[2] Kakac, S., Vasiliev, L.L., Bayazitoglu, Y. and Yener, Y. (2005) Microscale Heat Transfer: Fundamentals and Applications. Springer, New York.
http://dx.doi.org/10.1007/1-4020-3361-3
[3] Li, D. (2008) Micro and Nanoscale Gas Dynamics. Springer, New York.
[4] Wang, M., Lan, X. and Li, Z. (2008) Analyses of Gas Flows in Microand Nanochannels. International Journal of Heat and Mass Transfer, 51, 3630-3641.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.011
[5] Gad-el-Hak, M. (2005) The MEMS Handbook. Mechanical Engineering Handbook Series, CRC Press, New York.
[6] Cercignani, C. (1988) The Boltzmann Equation and Its Applications. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-1039-9
[7] Sone, Y., Ohwada, T. and Aoki, K. (1989) Evaporation and Condensation on a Plane Condensed Phase: Numerical Analysis of the Linearized Boltzmann Equation for Hard-Sphere Molecules. Physics of Fluids A, 1, 1398-1405.
http://dx.doi.org/10.1063/1.857316
[8] Sharipov, F. and Seleznev, S. (1998) Data on Internal Rarefied Gas Flows. Journal of Physical and Chemical Reference Data, 27, 657-706.
http://dx.doi.org/10.1063/1.556019
[9] Williams, M.M.R. (2001) A Review of the Rarefied Gas Dynamics Theory Associated with Some Classical Problems in Flow and Heat Transfer. Zeitschrift für Angewandte Mathematik und Physik, 52, 500-516.
http://dx.doi.org/10.1007/PL00001558
[10] Barichello, L.B., Camargo, M., Rodrigues, P. and Siewert, C.E. (2001) Unified Solutions to Classical Flow Problems Based on the BGK Model. Zeitschrift für Angewandte Mathematik und Physik, 52, 517-534.
http://dx.doi.org/10.1007/PL00001559
[11] Barichello, L.B. and Siewert, C.E. (2003) Some Comments on Modeling the Linearized Boltzmann Equation. Journal of Quantitative Spectroscopy and Radiative Transfer, 77, 43-59.
http://dx.doi.org/10.1016/S0022-4073(02)00074-2
[12] Siewert, C.E. (2003) The Linearized Boltzmann Equation: Concise and Accurate Solutions to Basic Flow Problems. Zeitschrift für Angewandte Mathematik und Physik, 54, 273-303.
http://dx.doi.org/10.1007/s000330300005
[13] Scherer, C.S., Prolo Filho, J.F. and Barichello, L.B. (2010) An Analytical Approach to the Unified Solution of Kinetic Equations in the Rarefied Gas Dynamics. I. Flow Problems. Zeitschrift für Angewandte Mathematik und Physik, 60, 70-115.
http://dx.doi.org/10.1007/s00033-008-7084-4
[14] Sone, Y. (2002) Kinetic Theory and Fluid Dynamics. Birkhauser, Boston.
http://dx.doi.org/10.1007/978-1-4612-0061-1
[15] Ivchenko, I.N., Loyalka, S.K. and Tompson, R.V. (2007) Analytical Methods for Problems of Molecular Transport. Springer, New York.
http://dx.doi.org/10.1007/978-1-4020-5865-3
[16] Lang, H. and Loyalka, S.K. (1984) Some Analytical Results for Thermal Transpiration and the Mechanocaloric Effect in a Cylindrical Tube. Physics of Fluids, 27, 1616-1619.
http://dx.doi.org/10.1063/1.864817
[17] Valougeorgis, D. and Thomas Jr., J.R. (1986) Exact Numerical Results for Poiseuille and Thermal Creep Flow in a Cylindrical Tube. Physics of Fluids, 29, 423-429.
http://dx.doi.org/10.1063/1.865725
[18] Siewert, C.E. (2000) Poiseuille and Thermal-Creep Flow in a Cylindrical Tube. Journal of Computational Physics, 160, 470-480.
http://dx.doi.org/10.1006/jcph.2000.6464
[19] Loyalka, S.K. and Tompson, R.V. (2009) The Velocity Slip Problem: Accurate Solutions of the BGK Model Integral Equation. European Journal of Mechanics-B/Fluids, 28, 211-213.
http://dx.doi.org/10.1016/j.euromechflu.2008.08.001
[20] Bhatnagar, P.L., Gross, E.P. and Krook, M. (1954) A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Physical Review, 94, 511-525.
http://dx.doi.org/10.1103/PhysRev.94.511
[21] Rodrigues, P., Kamphorst, C.H. and Barichello, L.B. (2009) A Spectral Method for Rarefied Gas Dynamics Problems in Cylindrical Geometry. International Journal of Pure and Applied Mathematics, 51, 181-187.
[22] Ferziger, J.H. (1967) Flow of a Rarefied Gas through a Cylindrical Tube. Physics of Fluids, 10, 1448-1453.
http://dx.doi.org/10.1063/1.1762304
[23] Mitsis, G.J. (1963) Transport Solutions to the Monoenergetic Critical Problems. Argonne National Laboratory, Argonne, Illinois, Report ANL-6787, 370-382.
[24] Siewert, C.E. and Valougeorgis, D. (2002) An Analytic Discrete-Ordinates Solution of the S model in Rarefied Gas Dinamics: Poiseuille and Thermal-Creep Flow in a Cylindrical Tube. Journal of Quantitative Spectroscopy and Radiative Transfer, 72, 531-550.
[25] Shakhov, E.M. (1974) Method of Investigation of Rarefied Gas Flows. Nauka, Moscow.
[26] Sharipov, F. (1996) Rarefied Gas Flows through a Long Tube at Any Temperature Ratio. Journal of Vacuum Science & Technology A, 14, 2627-2635.
http://dx.doi.org/10.1116/1.579991
[27] Kamphorst, C.H., Rodrigues, P. and Barichello, L.B. (2009) A Spectral Approach to Compute Rarefied Gas Flows in Cylindrical Geometry. International Nuclear Atlantic Conference, Rio de Janeiro, 27 September-2 October 2009. (CD-Rom)
[28] Barichello, L.B., Camargo, M., Rodrigues, P. and Siewert, C.E. (2002) An Integral Equation Basic to the BGK Model for Flow in a Cylindrical Tube. Zeitschrift für angewandte Mathematik und Physik, 53, 769-781.
http://dx.doi.org/10.1007/s00033-002-8182-3
[29] Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Function. Dover Publications, New York.
[30] Schultz, M.N. (1973) Spline Analysis. Prentice Hall, Englewood Cliffs.
[31] Barichello, L.B., Rodrigues, P. and Siewert, C.E. (2002) An Analytical Discrete-Ordinates Solution for Dual-Mode Heat Transfer in a Cylinder. Journal of Quantitative Spectroscopy and Radiative Transfer, 73, 583-602.
http://dx.doi.org/10.1016/S0022-4073(01)00181-9
[32] Dongarra, J.J., Bunch, J.R., Moler, C.B. and Stewart, G.W. (1979) LINPACK User’s Guide. SIAM, Philadelphia.
http://dx.doi.org/10.1137/1.9781611971811
[33] Sharipov, F. (1994) Onsager-Casimir Reciprocity Relations for Open Gaseous Systems at Arbitrary Rarefaction. I. General Theory for Single Gas. Physica A, 203, 437-456. http://dx.doi.org/10.1016/0378-4371(94)90009-4
[34] Sharipov, F. (1994) Onsager-Casimir Reciprocity Relations for Open Gaseous Systems at Arbitrary Rarefaction. II. Application of the Theory for Single Gas. Physica A, 203, 457-485.
http://dx.doi.org/10.1016/0378-4371(94)90010-8

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.