Isolation, Identification and Germplasm Preservation of Different Native Spirulina Species from Western Mexico


Spirulina is an edible algae and has a wide range of pharmaceutical applications in addition to its nutritional value. Isolation and identification of several Spirulina species were conducted in the western part of Mexico especially in the state of Jalisco. The purification strategy consisted of five optimized processing steps: 1) washing and centrifugation, 2) chemical treatment, 3) micromanipulation, 4) serial dilution, and 5) plating. Four species were isolated from different locations and two out of these four species were identified taxonomically up to the species level: Spirulina subsalsa and S. major. For short term conservation (30 days), the strains were maintained in liquid and solid agar medium at 10?C and 4?C. For medium term (few months), they were preserved in solid medium under a dried condition as agar flakes and for long term, cryopreservation was employed by using 5% and 10% DMSO, glycerol and methanol as osmoprotectants in liquid nitrogen. For short term preservation nearly 90% liquid and 100% agar recovered strains were viable after one month at both temperatures. In the case of the agar flakes, cells were viable after three months of conservation at room temperature. Cryopreservation did not give any suitable results after three months of conservation. Variable and two-step improved cryopreservation processes are now in progress for conservation.

Share and Cite:

R. Prasad, K. Sanghamitra, G. Antonia, G. Juan, R. Benjamin, I. Luis and V. Guillermo, "Isolation, Identification and Germplasm Preservation of Different Native Spirulina Species from Western Mexico," American Journal of Plant Sciences, Vol. 4 No. 12B, 2013, pp. 65-71. doi: 10.4236/ajps.2013.412A2009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O. Ciferri, “Spirulina, the Edible Micro-Organism,” Microbiological Reviews, Vol. 47, 1983, pp. 551-578.
[2] J. C. Dillon and P. A. Phan, “Spirulina as a Source of Proteins in Human Nutrition,” In: F. Doumengue, H. DurandChastel and A. Toulemont, Eds., Spirulinealgue de vie. MuséeOcéanographique. Bulletin de l’InstitutOcéanographique Monaco, Numérospécial, Vol. 12, 1993, pp. 103-107.
[3] A. Richmond, “Mass Culture of Cyanobacteria,” In: N. Mann and N. Carr, Eds., Photosynthetic Prokaryotes, 2nd Edition, Plenum Press, New York and London, 1992, pp. 181-210.
[4] Z. Cohen, “The Chemicals of Spirulina,” In: A. Vonshak, Ed., Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology, Taylor and Francis, London, 1997, pp. 175-204.
[5] A. Belay, “Mass Culture of Spirulina Outdoors: The Earthrise Farms Experience,” In: A. Vonshak, Ed., Spirulina platensis (Arthrospira), Physiology, Cell Biology and Biotechnology, Taylor & Francis, London, 1997, pp. 131-158.
[6] R. Henrikson, “Spirulina: Food of the Future,” 2nd Edition, Barcelona Urano S.A., 1994, p. 222.
[7] E. W. Becker, “Nutritional Properties of Microalgal Potentials and Constraints,” In: A. Richmond, Ed., Handbook of Microalgal Mass Culture, CRC Press, Inc., Boca Ratón, 1984, pp. 339-408.
[8] J. Leonard, “The 1964-65 Belgian Trans-Saharan Expedition,” Nature, Vol. 209, 1966, pp. 126-128.
[9] A. Vonshak, “Appendices,” In: A. Vonshak, Ed., Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London, 1997, pp. 213-226.
[10] M. Sánchez, J. Bernal-Castillo, C. Rozo and I. Rodríguez, “Spirulina (Arthrospira): An Edible Microorganism. A Review. Revista Universitas Scientiarum,” 2003.
[11] M. Lorenz, T. Friedl and J. G. Day, “Perpetual Maintenance of Actively Metabolizing Microalgal Cultures,” In: R. A. Andersen, Ed., Algal Culturing Techniques, Academic Press, New York, 2005, pp. 145-156.
[12] M. S. Mc. Grath, P. Daggett and S. Dilworth, “Freeze-Drying of Algae: Chlorophyta and Chrysophyta,” Journal of Phycology, Vol. 14, 1978, pp. 521-525.
[13] J. G. Day, I. M. Priestley and G. A. Codd, “Storage, Recovery and Photosynthetic Activities of Immobilized Algae,” In: C. Webb and F. Mavituna, Eds., Plant and Animal Cells, Process Possibilities, Ellis Horwood, Chichester, 1987, pp. 257-261.
[14] O. Holm-Hansen, “Factors Affecting the Viability of Lyophilized Algae,” Cryobiology, 1967, Vol. 4, pp. 17-23.
[15] D. Smith, “Emerging Tools and Technologies for Isolation, Conservation and Preservation of Microorganisms,” Proceedings in NBAIM-CAB International, UK Joint Workshop, New Delhi, 2004.
[16] J. Acreman, “Algae and Cyanobacteria: Isolation, Culture and Long-Term Maintenance,” The Journal of Industrial Microbiology, Vol. 13, 1994, pp. 193-194.
[17] M. B. Syiem, “Entrapped Cyanobacteria: Implications for Biotechnology,” Indian Journal of Biotechnology, Vol. 4, 2005, pp. 209-215.
[18] M. Navarro, V. García, V. Rodríguez and H. Herrera, “Algas del Occidente de México: Florística y Ecología,” Universidad de Guadalajara, 2006.
[19] J. Komárek, “Contribution to the Knowledge of Planktic Cyanoprokaryotes from Central Mexico,” Vol. 74, 2002, pp. 207-233.
[20] J. G. Rodríguez and R. L. Tavera, “Fitoplancton del Lago Zempoala,” Bol Soc Bot Mex, Vol. 63, 1998, pp. 85-100.
[21] Tomaselli, “Morphology, Ultrastructure and Taxonomy of Arthrospira (Spirulina) maxima and Arthospira. (Spirulina) platensis,” In: A. Vonshak, Ed., Spirulinaplatensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Taylor and Francis, London, 1997, pp. 1-16.
[22] R. Lewin, “Uncoiled Variants of Spirulina Platensis (Cyanophyceae: Oscillatoriaceae),” Archiv für Hydrobiologie, Supplement, Vol. 60, 1980, pp. 48-52.
[23] F. K. Hinda, “Thermal Microorganisms from a Hot Spring on the Coast of Lake Bogoria, Kenya,” Nova Hedwigia, Beiheft, Vol. 123, 2001, pp. 77-93.
[24] O. A. Owino, J. O. Oyugi, O. O. Nasirwa and L. A. Bennun, “Patterns of Variation in Water Bird Numbers on Four Rift Valley Lakes in Kenya,” Hydrobiologia, Vol. 458, 2001, pp. 45-53.
[25] C. Zarrouk, “Contribution al’etuded’unecyanophycee. Influence de Divers Facteurs Physiques Etchimiquessurlacroissance et Photosynthese de Spirulina maxima,” (Setch et Gardner) Geitler. Ph.D. Thesis, University of Paris, Paris, 1966, pp. 4-5.
[26] C. A. Ascaso, “Rapid Method for the Quantitative Isolation of Green Algae from Lichens,” 1980, pp. 45-483.
[27] T. Omata and N. Murata, “Isolation and Characterization of the Cytoplasmic Membranes from the Blue-Green Alga Cyanobacterium) Anacystis nidulans,” Plant Cell Physiology, Vol. 24, No. 6, 1983, pp. 1101-1112.
[28] R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman and R. Y. Stanier, “Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria,” Journal of Geneneral Microbiology, Vol. 111, 1979, pp. 1-61.
[29] C. P. Gopinathan, “Live Feed Culture-Mlcro-Algae,” Bud. CMFRI, No. 48, 1996, pp. 110-116.
[30] A. Ballot, P. Dadheech and L. Krienitz, “Phylogenetic Relationship of Arthrospira, Phormidium, and Spirulina strains from Kenyan and Indian Waterbodies,” Agra University Journal of Research: Science, Vol. 113, 2004, pp. 37-56.
[31] M. M. Gomont, “Monographie des Oscillariées (Nostocacées Homocystées), Ann. Sci. Nat. Bot., Ser. Vol 7, 1892, pp. 263-368.
[32] K. Anagnostidis and S. Golubic, “Uber die Okologie Einiger Spirulina-Arten. Nova Hedwigia,” Vol. 11, 1966. pp. 309-335.
[33] Guglielmgi and C. Bazirge, “Structure et Distribution des pores et des Perforations de l’enveloppe de Peptidoglycane chez Quelques Cyanobactkries,” Protistologica, Vol. 18, 1982, pp. 151-165.
[34] J. Rethmeier, “Untersuchungen zur O X kologie und zum Mechanismus der Sul®dadaption mariner Cyanobakterien der Ostsee,” PhD Thesis, 1995.
[35] J. Komárek, “Diversita a Moderní Klasifikace Sinic (Cyanoprocaryota) [Diversity and Modern Classification of Cyanobacteria (Cyanoprokaryota),” Inaugural Dissertation Not Published, 1992.
[36] B. S. Mayashree and A. Bhattacharjee, “An Efficient Protocol for Long-Term Preservation of Cyanobacteria,” Journal of Advanced Laboratory Research in Biology, Vol. 1, No. 1, 2010, pp. 41-45.
[37] K. Bodas, C. Brenning, K. R. Diller and J. J. Brand, “Cryopreservation of Blue-Green and Eukaryotic Algae in the Culture Collection at the University of Texas at Austin,” Cryo-Letters, Vol. 16, 1995, pp. 267-274.
[38] J. G. Day, “Cryo-Conservation of Microalgae and Cyanobacteria. Cryo-Letters Supplement,” Vol. 1, 1998, pp. 7-14.
[39] F. Mori, M. Errata and M. M. Watanabe, “Cryopreservation of Cyanobacteria and Green Algae in the NIES-Collection,” Microbiology and Culture Collections, 2002, pp. 45-55.
[40] J. G. Day, J. Muller, K. Comte, T. Friedl, R. Rippka, T. Proeschold, K. Harding and E. E. Benson, “Phenotypic and Genotypic Stability of Cryopreserved Algal and Cyanobacterial Cultures: A Prerequisite for Taxonomic and Systematic Studies,” Cryobiology, Vol. 53, 2006, pp. 430-431.
[41] O. Kiyoshi, M. Megumi and I. Masahiro, “Cryopreservation of Cyanobacteria,” Genes & Genetic Systems, Vol. 80, 2005, p. 487.
[42] H. K. Park, “Long-Term Preservation of Bloom-Forming Cyanobacteria by Cryopreservation,” Algae-Inchon., Vol. 21, 2006, pp. 125-132.
[43] D. B. Davis, R. Dulbecco, N. H. Eisen, S. H. Ginsberg, B. W. Wood and M. Mc Carty, “Tratado de Microbiología con Inclusión en Inmunología y Genética Molecular,” 2nd Edition, Salvat, 1978.
[44] M. T. Madigan, J. M. Martinko, B. Parker and J. P. Brock, “Biology of Microorganisms,” Pearson Education, Inc., 2003.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.