Static and 50 Hz Electromagnetic Fields Effects on Human Neuronal-Like Cells Vibration Bands in the Mid-Infrared Region


Human neuronal-like cells were exposed to static and 50 Hz electromagnetic fields at the intensities of 2 mT and 1 mT, respectively. The effects of exposure were investigated in the mid-infrared region by means of Fourier self deconvolu-tion spectroscopic analysis. After exposure of 3 hours to static and 50 Hz electromagnetic fields, the vibration bands of CH2 methilene group increased significantly after both exposures, suggesting a relative increase of lipid related to conformational changes in the cell membrane due to electromagnetic fields. In addition, PO2- stretching phosphate bands decreased after both exposures, suggesting that alteration in DNA/RNA can be occurred. In particular, exposure of 3 hours to 50 Hz electromagnetic fields produced significant increases in β-sheet contents in amide I, and around the 1740 cm?1 band assigned to non-hydrogen-bonded ester carbonyl stretching mode, that can be related to unfolding processes of proteins structure and cells death. Further exposure up to 18 hours to static magnetic field produced an increase in β-sheet contents as to α-helix components of amide I region, as well.

Share and Cite:

E. Calabrò, S. Condello, S. Magazù and R. Ientile, "Static and 50 Hz Electromagnetic Fields Effects on Human Neuronal-Like Cells Vibration Bands in the Mid-Infrared Region," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 2, 2011, pp. 69-78. doi: 10.4236/jemaa.2011.32012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] WHO (World Health Organization), “Extremely Low Frequency (ELF) Fields,” Environmental Health Criteria, Geneva, Vol. 35, 1984.
[2] WHO (World Health Organization), “Magnetic Fields,” Environmental Health Criteria, Geneva, Vol. 69, 1987.
[3] WHO (World Health Organization), “Electromagnetic Fields (300 Hz to 300 GHz),” Environmental Health Criteria, Geneva, Vol. 137, 1993.
[4] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields,” IARC (Monographs on the Evaluation of Carcinogenic Risks to Humans), Lyon, 2002, Vol. 80, pp. 1-395.
[5] ICNIRP (International Commission on Non-Ionizing Radiation Protection), “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz),” Health Physics, Vol. 74, No. 4, 1998, pp. 494-522.
[6] P. Chadwick and F. Lowes, “Magnetic Fields on British Trains,” Annals of Occupational Hygiene, Vol. 42, No. 5, 1998, pp. 331-335.
[7] F. M. Dietrich and W. L. Jacobs, “Survey and Assessment of Electric and Magnetic Field (EMF) Public Exposure in the Transportation Environment,” US Department of Transportation, Federal Railroad Administration, 1999 (Report No. PB 99-130908).
[8] NIOSH (National Institute for Occupational Safety and Health), National Institute of Environmental Health Sciences and US Department of Energy, “Questions and answers—EMF in the Workplace. Electric and Magnetic Fields Associated with the Use of Electric Power,” EMF RAPID Program, Washinton DC, 1996.
[9] S. Milham and E. M. Ossiander, “Historical Evidence that Residential Electrification Caused the Emergence of the Childhood Leukemia Peak,” Medical Hypotheses, Vol. 56, No. 3, 2001, pp. 290-295. doi:10.1054/mehy.2000.1138
[10] J. A. Reese, R. F. Jostes and M. E. Frazier, “Exposure of Mammalian Cells to 60-Hz Magnetic or Electric Fields: Analysis for DNA Singles-Strand Breaks,” Bioelectromagnetics, Vol. 9, No. 3, 1988, pp. 237-247. doi:10.1002/bem.2250090305
[11] J. C. Murphy, D. A. Kaden, J. Warren and A. Sivak, “Power Frequency Electric and Magnetic Fields: A Review of Genetic Toxicology,” Mutation Research, Vol. 296, No. 3, 1993, pp. 221-240.
[12] D. W. Fairbairn and K. L. O'Neill, “The Effects of Electromagnetic Fields Exposure on the Formation of DNA Sinlge Strand Breaks in Human Cells,” Cellular and Molecular Biology, Vol. 40, No. 4, 1994, pp. 561-567.
[13] I. Nordenson, K. M. Hansson, M. Sandstrom and M. O. Mattson, “Effect of Low-Frequency Magnetic Fields on the Chromosomal Level in Human Amniotic Cells,” In: B. Norden and C. Ramel, Eds., Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems—Resonant Phenomena, Oxford University Press, Oxford, 1992, pp. 240-250.
[14] M. Simko, R. Kriehuber and S. Lange, “Micronucleus Formation in Human Amnion Cells after Exposure to 50 Hz Magnetic fields Applied Horizontally and Vertically,” Mutation Research, Vol. 418, No. 2-3, 1998, pp. 101-111.
[15] G. R. Ding, K. Wake, M. Taki and J. Miyakoshi, “Increase in Hypoxanthine-Guanine Phosphoribosyl Transferase Gene Mutations by Exposure to Electric Field,” Life Sciences, Vol. 68, 2001, pp. 1041-1046. doi:10.1016/S0024-3205(00)01007-9
[16] F. I. Wolf, A. Torsello, B. Tedesco, S. Fasanella, A. Boninsegna, M. D’Ascenzo, C. Grassi, G. B. Azzena and A. Cittadini, “50-Hz Extremely Low Frequency Electromagnetic Fields Enhance Cell Proliferation and DNA Damage: Possible Involvement of a Redox Mechanism,” Biochimica et Biophysica Acta, Vol. 1743, No. 1-2, 2005, pp. 120-129. doi:10.1016/j.bbamcr.2004.09.005
[17] G. R. Verheyen, G. Pauwels, L. Verschaeve and G. Schoeters, “Effect of Coexposure to 50 Hz Magnetic Fields and an Aneugen on Human Lymphocytes, Determined by the Cytokinesis Block Micronucleus assay,” Bioelectromagnetics, Vol. 24, No. 3, 2003, pp. 160-164. doi:10.1002/bem.10100
[18] R. Pasquini, M. Villarini, G. S. Scassellati, C. Fatigoni and M. Moretti, “Micronucleus Induction in Cells Co-Exposed in Vitro to 50 Hz Magnetic Field and Benzene, 1,4-Benzenediol (Hydroquinone) or 1,2,4-Ben- zenetriol,” Toxicology in Vitro, Vol. 17, No. 5-6, 2003, pp. 581-586. doi:10.1016/S0887-2333(03)00137-1
[19] S. Ivancsits, A. Pilger, E. Diem, A. Schaffer and H. W. Rüdiger, “Vanadate Induces DNA Strand Breaks in Cultured Human Fibroblasts at Doses Relevant to Occupational Exposure Mutation Research, Vol. 519, No. 1-2, 2002, pp. 25-35.
[20] M. C. Pirozzoli, C. Marino, G. A. Lovisolo, C. Laconi, L. Mosiello and A. Negroni, “Effects of 50 Hz Electromagnetic Field Exposure on Apoptosis and Differentiation in a Neuroblastoma Cell Line,” Bioelectromagnetics, Vol. 24, No. 7, 2003, pp. 510-516. doi:10.1002/bem.10130
[21] A. A. Marino, O. V. Kolomytkin and C. Frilot, “Extracellular Currents Alter Gap Junction Intercellular Communication in Synovial Fibroblasts,” Bioelectromagnetics, Vol. 24, No. 3, 2003, pp. 199-205. doi:10.1002/bem.10085
[22] R. R. Raylman, A. C. Clavo and R. L. Wahl, “Exposure to Strong Static Magnetic Field Slows the Growth of Human Cancer Cells in Vitro,” Bioelectromagnetics, Vol. 17, 1996, pp. 358-363. doi:10.1002/(SICI)1521-186X(1996)17:5<358::AID-BEM2>3.0.CO;2-2
[23] S. Pacini, G. B. Vannelli, T. Barni, M. Ruggiero, I. Sardi, P. Pacini and M. Gulisano, “Effect of 0.2 T Static Magnetic Field on Human Neurons: Remodeling and Inhibition of Signal Transduction without Genome Instability,” Neuroscience Letters, Vol. 267, No. 3, 1999, pp. 185-188. doi:10.1016/S0304-3940(99)00362-6
[24] R. Ohata, N. Tomita and Y. Ikada, “Effect of a Static Magnetic Field on Ion Transport in a Cellulose Membrane,” Journal of Colloid and Interface Science, Vol. 270, No. 2, 2004, pp. 413-416. doi:10.1016/j.jcis.2003.09.035
[25] A. Hammiche, M. J. German, R. Hewitt, H. M. Pollock and F. L. Martin, “Monitoring Cell Cycle Distributions in MCF-7 Cells Using Near-Field Photothermal Micro- spectroscopy,” Biophysical Journal, Vol. 88, 2005, pp. 3699- 3706. doi:10.1529/biophysj.104.053926
[26] H. Y. N. Holman, R. Goth-Goldstein, E. A. Blakely, K. Bjornstad, M. C. Martin and W. R. McKinney, “Individual Human Cell Responses to Low Doses of Chemicals Studied by Synchrotron Infrared Spectromicroscopy,” In: A. Mahadevan-Jansen and G. J. Puppels Ed., Biomedical Spectroscopy: Vibrational Spectroscopy and Other Novel Techniques, Proceedings of SPIE, Vol. 3918, 2000, pp. 57-63. doi:10.1117/12.384959
[27] K. L. Chan and S. G. Kazarian, “New Opportunities in Micro-and Macro-Attenuated Total Re?ection Infrared Spectroscopic Imaging: Spatial Resolution and Sampling Versatility,” Applied Spectroscopy, Vol. 57, No. 4, 2003, pp. 381-389. doi:10.1366/00037020360625907
[28] J. Zhou, Z. Wang, S. Sun, M. Liu and H. Zhang, “A Rapid Method for Detecting Conformational Changes during Di?erentiation and Apoptosis of HL60 Cells by Fourier- Transform Infrared Spectroscopy,” Biotechnology and Applied Biochemistry, Vol. 33, No. 2, 2001, pp. 127-132. doi:10.1042/BA20000074
[29] K. Z. Liu, L. Jia, S. M. Kelsey, A. C. Newland and H. H. Mantsch, “Quantitative Determination of Apoptosis on Leukemia Cells by Infrared Spectroscopy,” Apoptosis, Vol. 6, No. 4, 2001, pp. 269-278. doi:10.1023/A:1011383408381
[30] F. Gasparri and M. Muzio, “Monitoring of Apoptosis of HL60 Cells by Fourier-Transform Infrared Spectroscopy,” Biochemical Journal, Vol. 369, 2003, pp. 239-248. doi:10.1042/BJ20021021
[31] B. M. Smith, and S. Franzen, “Single-Pass Attenuated Total Reflection Fourier Transform Infrared Spectroscopy for the Analysis of Proteins in H2O Solution,” Analytical Chemistry, Vol. 74, No. 16, 2002, pp. 4076-4080. doi:10.1021/ac020103v
[32] B. Rigas, S. Morgello, I. S. Goldman and P. T. Wong, “Human Colorectal Cancers Display Abnormal Fourier- Transform Infrared Spectra,” Proceedings of the National Academy of Sciences of the United States of America, New York, Vol. 87, No. 20, 1990, pp. 8140-8144. doi:10.1073/pnas.87.20.8140
[33] F. S. Parker, “Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine,” Plenum Press, New York, 1971.
[34] C. L. McDowell and E. T. Papoutsakis, “Decreasing Extracellular pH Increases CD13 Receptor Surface Content and Alters the Metabolism of HL60 Cells Cultured in Stirred Tank Bioreactors,” Biotechnology Progress, Vol. 14, No. 4, 1998, pp. 567-572. doi:10.1021/bp980050w
[35] C. L. McDowell and E. T. Papoutsakis, “Serum Increases the CD13 Receptor Expression, Reduces the Transduction of Fluid-Mechanical Forces, and Alters the Metabolism of HL60 Cells Cultured in Agitated Bioreactors,” Biotechnology and Bioengineering, Vol. 60, No. 2, 1998, pp. 259-268. doi:10.1002/(SICI)1097-0290(19981020)60:2<259::AID-BIT13>3.0.CO;2-H
[36] W. K. Surewicz and H. H. Mantsch, “New Insight into Protein Secondary Structure from Resolution-Enhanced Infrared Spectra,” Biochimica et Biophysica Acta, Vol. 952, No. 2, 1988, pp. 115-130. doi:10.1016/0167-4838(88)90107-0
[37] R. Bauer, R. Carrotta, C. Rischel and L. Ogendal, “Characterization and Isolation of Intermediates in β-Lacto- globulin Heat Aggregation at High pH,” Biophysical Journal, Vol. 79, No. 2, 2000, pp. 1030-1038. doi:10.1016/S0006-3495(00)76357-0
[38] H. Fabian, D. Chapman and H. H. Mantsch, “In Infrared Spectroscopy of Biomolecules,” Wiley-Liss, New York, 1996.
[39] M. Jackson and H. H. Mantsch, “Biomedical Infrared Spectroscopy,” In: H. H. Mantsch and D. Chapman, Eds., Infrared Spectroscopy of Biomolecules, Wiley-Liss, New York, 1996, pp. 311-340.
[40] R. Mittler, In: R. A. Lockshin, Z. Zakeri and J. L. Tilly, Eds., When Cells Die: A Comprehensive Evaluation of Apoptosis and Programmed Cell Death, Wiley-Liss, New York, 1998, pp. 147-174.
[41] R. Birge, E. Fajardo and B. Hempstead, In: R. A. Lockshin, Z. Zakeri, J. L. Tilly, Eds., When Cells Die: A Comprehensive Evaluation of Apoptosis and Programmed Cell Death, Wiley-Liss, New York, 1998, pp. 347-384.
[42] N. Jamin, P. Dumas, J. Moncuit, W. H. Fridman, J. L. Teillaud, G. L. Carr and G. P. Williams, “Highly Resolved Chemical Imaging of Living Cells by Using Synchrotron Infrared Microspectrometry,” Proceedings of the National Academy of Sciences of the United States of America 95, Vol. 95, 1998, pp. 4837-4840.
[43] H. Y. N. Holman, M. C. Martin, E. A. Blakely, K. Bjornstad and W. R. McKinney, “IR Spectroscopic Characteristics of Cell Cycle and Cell Death Probed by Synchrotron Radiation Based Fourier Transform IR Spectromicroscopy,” Biopolymers, Vol. 57, No. 6, 2000, pp. 329-333. doi:10.1002/1097-0282(2000)57:6<329::AID-BIP20>3.0.CO;2-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.