[1]
|
C. Mbane Biouele, “Hurricanes and Cyclones Kinematics and Thermo-Dynamics Based on Clausius-Clapeyron Relation Derived in 1832,” International Journal of Physical Sciences, Vol. 8, No. 23, 2013, pp. 1284-1290.
|
[2]
|
C. Mbane Biouele, E. Yizengaw, M. B. Moldwin and G. Cautenet, “Impacts of Thermoelastic Properties of Saturated Water Vapor on Tropical Depressions Thermodynamics and Dynamics,” Arch. Phys.Rech., Vol. 2, No. 4, 2011, pp. 24-33.
|
[3]
|
C. Mbane Biouele, “Vertical Profi-les of Winds and Electric Fields Triggered by Tropical Storms under the Hydrodynamic Concept of Air Particle,” International Journal of Physical Sciences, Vol. 4, No. 4, 2009, pp. 242-246.
|
[4]
|
C. Mbane Biouele, “Physics of Atmosphere Dynamic or Electric Balance Processes Such As Thunderclouds and Related Lighting Flashes,” Geosciences, Vol. 2, No. 1, 2012, pp. 6-10.
|
[5]
|
M. Steiner and R. A. Houze Jr., “Sensitivity of the Estimated Monthly Convective Rain Fraction to the Choice of Z-R Relation,” Journal of Applied Meteorology, Vol. 36, No. 5, 1997, pp. 452-462.
|
[6]
|
R. A. Houze Jr., “Cloud Clusters and Large-Scale Vertical Motions in the Tropics,” Journal of the Meteorological Society of Japan, Vol. 60, No. 1, 1982, pp. 396-410.
|
[7]
|
B. E. Mapes and R. A. Houze Jr., “Cloud Clusters and Superclusters over the Oceanic Warm Pool,” Monthly Weather Review, Vol. 121, No. 5, 1993, pp. 1398-1415.
http://dx.doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2
|
[8]
|
D. L. Hartmann, H. H. Hendon and R. A. Houze Jr., “Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate,” Journal of the Atmospheric Sciences, Vol. 41, No. 1, 1984, pp. 113-121.
|
[9]
|
D. A. Short and K. Nakamura, “TRMM Radar Observations of Shallow Precipitation over the Tropical Oceans,” Journal of Climate, Vol. 13, No. 23, 2000, pp. 4107-4124. http://dx.doi.org/10.1175/1520-0442(2000)013<4107:TROOSP>2.0.CO;2
|
[10]
|
C. Prabhakara, R. Iacovazzi, J. A. Weinman and G. Dalu, “A TRMM Microwave Radiometer Rain Rates Estimation Method with Convective and Stratiform Discrimination,”Journal of the Meteorological Society of Japan, Vol. 78, No. 3, 2000, pp. 241-258.
|
[11]
|
Z. D. Adeyewa and K. Nakamura, “Preliminary Study of Rainfall and Storm Structure over Africa with TRMM Precipitation Radar Data,” Meteorologische Zeitschrift, Vol. 12, No. 4, 2003, pp. 197-202.
http://dx.doi.org/10.1127/0941-2948/2003/0012-0197
|
[12]
|
Z. D. Adeyewa and K. Nakamura, “Validation of TRMM Radar Rainfall Data over Major Climatic Regions in Africa,” Journal of Applied Meteorology, Vol. 42, No. 2, 2003, pp. 331-347.
|
[13]
|
R. J. Donaldson, “Radar Reflectivity Profiles in Thunderstorms,” Journal of Meteorology, Vol. 18, No. 3, 1961, pp. 292-305.
http://dx.doi.org/10.1175/1520-0469(1961)018<0292:RRPIT>2.0.CO;2
|
[14]
|
E. J. Zipser and K. R. Lutz, “The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability” Monthly Weather Review, Vol. 122, No. 8, 1994, pp. 1751-1759.
http://dx.doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2
|
[15]
|
C. Kummerow, et al., “The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit,” Journal of Applied Meteorology, Vol. 39, No. 12, 2000, pp. 1965-1982.
|
[16]
|
F. Ferreira, P. Amayenc, S. Oury and J. Testud, “Study and “Tests of Improved Rain Estimates from the TRMM Precipitation Radar,” Journal of Applied Meteorology, Vol. 40, No. 11, 2001, pp. 1878-1899.
|
[17]
|
C. Kummerow and L. Giglio, “A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part 1: Algorithm Description,” Journal of Applied Meteorology, Vol. 33, No. 1, 1994, pp. 3-18. http://dx.doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
|
[18]
|
S. Lang, W. K. Tao, J. Simpson and B. Ferrier, “Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods,” Journal of Applied Meteorology, Vol. 42, No. 4, 2003, pp. 505-527.
http://dx.doi.org/10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2
|
[19]
|
Y. Hu and Q. Fu, “Observed Poleward Expansion of the Hadley Circulation since 1979,” Atmospheric Chemistry and Physics, Vol. 7, 2007, pp. 5229-5236.
|
[20]
|
J. Lu, G. A. Vecchi and T. Reichler, “Expansion of the Hadley Cell under Global Warming,” Geophysical Research Letters, Vol. 34, 2007, Article ID: L06805.
http://dx.doi.org/10.1029/2006GL028443
|
[21]
|
R. W. Hobbs and M. N. Raphael, “Characterizing the Zonally Asymmetric Component of the SH Circulation,” Climate Dynamics, Vol. 35, 2010, pp. 859-873.
|
[22]
|
P. Kushner, I. M. Held and T. L. Delworth, “Southern Hemisphere Atmospheric Circulation Response to Global Warming,” Journal of Climate, Vol. 14, No. 10, 2001, pp. 2238-2249. http://dx.doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2
|
[23]
|
L. Polvani and P. J. Kushner, “Tropospheric Response to Stratospheric Perturbations in a Relatively Simple General Circulation Model,” Geophysical Research Letters, Vol. 29, No. 7, 2002, 18 p.
http://dx.doi.org/10.1029/2001GL014284
|
[24]
|
L.-M. Polvani, D. W. Waugh, G. J. P. Correa and S.-W. Son, “Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere,” Journal of Climate, Vol. 24, 2011, pp. 795-812.
|
[25]
|
H. R. Byers, “General Meteorology,” McGraw-Hill Book Company. INC, 1959, 540 p.
|
[26]
|
G. K. Batchelor, “An Introduction to Fluid Dynamics,” Cambridge University Press, 1967, 496 p.
|
[27]
|
C. A. Riegel, “Fundamentals of Atmospheric Dynamics and Thermo-Dynamics,” World Scientific Publishing Co. Pte. Ltd., 1992, 512 p.
|