Plasmid vector based generation of transgenic mesenchymal stem cells with stable expression of reporter gene in caprine


The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and a novel method of stem cell therapy in the various diseases. Achieving high levels of transgene expression for the longer period of time, without adversely affecting cell viability and differentiation capacity of the cells, is crucial. In the present study, we investigated the efficiency of plasmid vector for the production of transgenic cMSCs and examined any functional change of cells after transfection. To do so first we have collected bone marrows from the adult goats and cultured them for isolation of mesenchymal stem cells (cBM-MSCs). These cells were characterized using MSC specific markers including differentiation into osteocytes and adipocytes. Transfection with plasmid vector did not adversely affect cBM-MSCs morphology, viability or differentiation potential, and transgene expression levels were unaffected beyond passage 12th. The results indicated that we have been able to generate transgenic caprine MSC (tcBM-MSC) and transfection of cBM-MSCs using plasmid vector resulted in very high and stable transfection efficiency. This finding may have considerable significance in improving the efficacy of MSC-based therapies and their tracking in animal model.

Share and Cite:

Kumar, M. , Singh, R. , Kumar, K. , Agarwal, P. , Mahapatra, P. , Saxena, A. , Kumar, A. , Bhanja, S. , Malakar, D. , Singh, R. , Das, B. and Bag, S. (2013) Plasmid vector based generation of transgenic mesenchymal stem cells with stable expression of reporter gene in caprine. Stem Cell Discovery, 3, 226-239. doi: 10.4236/scd.2013.34028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-147.
[2] Caplan, A.I. (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cell Physiology, 213, 341-347.
[3] Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A. and Ogawa, S. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103, 697-705. JCI5298
[4] Kopen, G.C., Prockop, D.J. and Phinney, D.G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711-10716.
[5] Barry, F.P. and Murphy, J.M. (2004) Mesenchymal stem cells, clinical applications and biological characterization. International Journal of Biochemical and Cell Biology, 36, 568-584.
[6] Mahmood, A., Lu, D., Lu, M. and Chopp, M. (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 53, 697-702.
[7] Ryan, J.M., Barry, F., Murphy, J.M. and Mahon, B.P. (2007) Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical Experimental Immunology, 149, 353-363.
[8] Kumar, S., Chanda, D. and Ponnazhagan, S. (2008) Therapeutic potential of genetically modified mesenchymal stem cells. Gene Therapy, 15, 711-715.
[9] Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I. and Quaini, F. (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344. pnas.181177898
[10] Hibi, H., Yamada, Y. and Kagami, H. (2006) Distraction osteogenesis assisted by tissue engineering in an irradiated mandible, a case report. International Journal of Oral Maxillofac Implants, 21, 141.
[11] Yoshikawa, T., Mitsuno, H., Nonaka, I., Sen, Y., Kawanishi, K., Inada, Y., Takakura, Y., Okuchi, K. and Nonomura, A. (2008) Wound therapy by marrow mesenchymal cell transplantation. Plastic and Reconstructive Surgery, 121, 860.
[12] Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D. and Shimizu, H. (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. Journal of Immunology, 180, 2581.
[13] Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H. Marschall, H.U., Dlugosz, A., Szakos, A., Hassan, Z., Omazic, B., Aschan, J., Barkholt, L. and Le Blanc, K. (2006) Mesenchymal stem cells for treatment of therapy-resistant graftversus-host disease. Transplantation, 81, 1390-1397.
[14] Amado, L.C., Saliaris, A.P., Schuleri, K.H., St John, M., Xie, J.S., Cattaneo, S., Durand, D.J., Fitton, T., Kuang, J.Q., Stewart, G., Lehrke, S., Baumgartner, W.W., Martin, B.J., Heldman, A.W. and Hare, J.M. (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474-11479.
[15] McDonald, J.W. and Becker, D. (2003) Spinal cord injury, promising interventions and realistic goals. American Journal of Physical Medicine & Rehabilitation, 82, 38. 0000086994.53716.17
[16] Reiss, K., Mentlein, R., Sievers, J. and Hartmann, D. (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience, 115, 295.
[17] Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimune, Y. (1997) “Green mice” as a source of ubiquitous green cells. FEBS, 407, 313.
[18] McMahon, J.M., Conroy, S., Lyons, M., Greiser, U., O’shea, C., Strappe, P., Howard, L., Murphy, M., Barry, F. and O’brien, T. (2006) Gene transfer into rat mesenchymal stem cells, a comparative study of viral and nonviral vectors. Stem Cells and Development, 15, 87. scd.2006.15.87
[19] McGinley, L., McMahon, J., Strappe, P., Barry, F., Murphy, M., O’Toole, D. and O’Brien1, T. (2011) Lentiviral vector mediated modification of mesenchymal stem cells and enhanced survival in an in vitro model of ischaemia. Stem Cell Research and Therapy, 12, 1-18.
[20] Zhang, X.Y., La Russa, V.F., Bao, L., Kolls, J., Schwarzenberger, P. and Reiser, J. (2002) Lentiviral vectors for sustained transgene expression in human bone marrowderived stromal cells. Molecular Therapy, 5, 555-565.
[21] Totsugawa, T., Kobayashi, N., Okitsu, T., Noguchi, H., Watanabe, T., Matsumura, T., Maruyama, M., Fujiwara, T., Sakaguchi, M. and Tanaka, N. (2002) Lentiviral transfer of the LacZ gene into human endothelial cells and human bone marrow mesenchymal stem cells. Cell Transplantation, 11, 481-488.
[22] Davis, B.M., Humeau, L., Slepushkin, V., Binder, G., Korshalla, L., Ni, Y., Ogunjimi, E.O., Chang, L.F., Lu, X. and Dropulic, B. (2004) ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive haematopoietic progenitor cells. Blood, 104, 364-373. 10.1182/blood-2003-07-2363
[23] Chan, J., O’donoghue, K., de la Fuente, J., Roberts, I.A., Kumar, S., Morgan, E.J. and Fisk, M.N. (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells, 23, 93-102.
[24] Kumar, M., Yasotha, T., Singh, R.K., Singh, R., Kumar, K., Ranjan, R., Chetan, D., Das, B.C. and Bag, S. (2013) Generation of transgenic mesenchymal stem cells expressing GFP as reporter gene using no viral vector in caprine. Indian Journal of Experimental Biology, 51, 502-509.
[25] Woodbury, D., Reynolds, K. and Black, I.B. (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. Journal of Neuroscience Research, 96, 908-917.
[26] Wynn, R.F., Hart, C.A., Corradi-Perini, C., O’Neill, L., Evans, C.A., Wraith, J.E., Fairbairn, L.J. and Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643-2645.
[27] Devine, S.M., Bartholomew, A.M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., Sturgeon, C., Hewett, T., Chung, T., Stock, W., Sher, D., Weissman, S., Ferrer, K., Mosca, J., Deans, R., Moseley, A. and Hoffman, R. (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29, 244-255. 10.1016/S0301-472X(00)00635-4
[28] Bensidhoum, M., Chapel, A., Francois, A., Demarquay, C., Mazurier, C., Fouillard, L., Bouchet, S., Bertho, J.M., Gourmelon, P., Aigueperse, J., Charbord, P., Gorin, N.C., Thierry, D. and Lopez, M. (2004) Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 103, 3313-3319.
[29] Chapel, A., Bertho, J.M., Bensidhoum, M., Fouillard, L., Young, R.G., Frick, J., Demarquay, C., Cuvelier, F., Mathieu, E., Trompier, F., Dudoignon, N., Germain, C., Mazurier, C., Aigueperse, J., Borneman, J., Gorin, N.C., Gourmelon, P. and Thierry, D. (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. Journal of Gene Medicine, 5, 1028-1038.
[30] Ortiz, L.A., Gambelli, F., McBride, C., Gaupp, D., Baddoo, M. and Kaminski, N. (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences of the United States of America, 100, 8407-8411.
[31] Lee, C.I., Kohn, D.B., Ekert, J.E. and Tarantal, A.F. (2004) Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Molecular Therapy, 9, 112-123.
[32] Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A. and Verfaillie, C.M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41-49.
[33] Deans, R.J. and Moseley, A.B. (2000) Mesenchymal stem cells, biology and potential clinical uses. Experimental Hematology, 28, 875-884.
[34] Itescu, S., Schuster, M.D. and Kocher, A.A. (2003) New directions in strategies using cell therapy for heart disease. Journal of Molecular Medicine, 81, 288-296.
[35] Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. and Kessler, P.D. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93-98.
[36] Fang, B., Shi, M., Liao, L., Yang, S., Liu, Y. and Zhao, R.C. (2004) Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride induced liver fibrosis in mice. Transplantation, 78, 83-88.
[37] Murphy, J.M., Fink, D.J., Hunziker, E.B. and Barry, F.P. (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheuminent, 48, 3464-3474.
[38] Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., David, M., Bodine, D.M., Leri, A. and Anversa, P. (2001) Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701-705.
[39] Devine, S.M., Cobbs, C., Jennings, M., Bartholomew, A. and Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 101, 2999-3001.
[40] Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., Belmonte, N., Ferrari, G., Leone, B.E., Bertuzzi, F., Zerbini, G., Allavena, P., Bonifacio, E. and Piemonti, L. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemo kine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419-427.
[41] Simmons, P.J. and Torok-Storb, B. (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antbody-STRO-1. Blood, 78, 55-62.
[42] Rosada, C., Justesen, J., Melsvik, D., Ebbesen, P. and Kassem, M. (2003) The human umbilical cord blood, a potential source for osteoblast progenitor cells. Calcif Tissue International, 72, 135-142.
[43] Haynesworth, S.E., Goshima, J., Goldberg, W.M. and Caplan, A.I. (1992) Characterization of cells with osteogenic potential from human marrow. Bone, 13, 81-88.
[44] Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P.G., Riminucci, M. and Bianco, P. (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131, 324-336. 10.1016/j.cell.2007.08.025
[45] Kassem, M., Kristiansen, M. and Abdallah, B.M. (2004) Mesenchymal stem cells, cell biology and potential use in therapy. Basic Clinical, Pharmacology and Toxicology, 95, 209-214.
[46] Krabbe, C., Zimmer, J. and Meyer, M. (2005) Neural transdifferentiation of mesenchymal stem cells—A critical review. APMIS, 113, 831-844.
[47] Woodbury, D., Reynolds, K. and Black, I.B. (2002). Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. Journal of Neuroscience Research, 69, 908-917.
[48] Chuah, M.K., Van Damme, A., Zwinnen, H., Goovaerts, I., Vanslembrouck, V., Collen, D. and VandenDriessche, T. (2000) Long-term persistence of human bone marrow stromal cells transduced with Factor VIII-retroviral vectors and transient production of therapeutic levels of human Factor VIII in nonmyeloablated immunodeficient mice. Human Gene Therapy, 11, 729-738. 10.1089/10430340050015626
[49] Schwarz, E.J., Alexander, G.M., Prockop, D.J. and Azizi, S.A. (1999) Multipotential marrow stromal cells transduced to produce L-DOPA, engraftment in a rat model of Parkinson’s disease. Human Gene Therapy, 10, 2539-2549.
[50] Allay, J.A., Dennis, J.E., Haynesworth, S.E., Majumdar, M.K., Clapp, D.W., Shultz, L.D., Caplan, A.I. and Gerson, S.L. (1997) Lacz and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Human Gene Therapy, 8, 1417-1427.
[51] Marx, J.C., Allay, J.A., Persons, D.A., Nooner, S.A., Hargrove, P.W., Kelly, P.F., Vanin, E.F. and Horwitz, E.M. (1999) High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Human Gene Therapy, 10, 1163-1173.
[52] Chianget, G.G., Rubin, H.I., Cherington, V., Wang, T., Sobolewski, J., McGrath, C.A., Gaffney, A., Emami, S., Sarver, N., Levine, P.H., Greenberger, J.S. and Hurwitz, D.R. (1999) Bone marrow stromal cell-mediated gene therapy for hemophilia A, in vitro expression of human Factor VIII with high biological activity requires the inclusion of the proteolytic site at amino acid 1648. Human Gene Therapy, 10, 61-76.
[53] Chuah, M.K., Brems, H., Vanslembrouck, V., Collen, D. and Vandendriessche, T. (1998) Bone marrow stromal cells as targets for gene therapy of hemophilia A. Human Gene Therapy, 9, 353-365.
[54] Jaalouk, D.E., Eliopoulos, N., Couture, C., Mader, S. and Galipeau, J. (2000) Glucocorticoid-inducible retrovector for regulated transgene expression in genetically engineered bone marrow stromal cells. Human Gene Therapy, 11, 1837-1849.
[55] Madeira, C., Mendes, R.D., Ribeiro, S.C., Boura, J.S., Aires-Barros, M.R., da Silva, C.L., and Cabral, J.M.S. (2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. Journal of Biomedicine and Biotechnology, 12, 1-12. 735349
[56] Clements, M.O., Godfrey, A., Crossley, J., Wilson, S.J., Takeuchi, Y. and Boshoff, C. (2006) Lentiviral manipulation of gene expression in human adult and embryonic stem cell. Tissue Engineering, 12, 7-13. 2006.12.1741
[57] Zhang, X. and Godbey, W.T. (2006) Viral vectors for gene delivery in tissue engineering. Advance Drug Delivery Reviews, 58, 515-534.
[58] Park, S.J. and Na, K. (2012) The transfection efficiency of photo sensitizer-induced gene delivery to human MSCs and internalization rates of eGFP and Runx2 genes. Biomaterials, 33, 6485-6494.
[59] Devis, B.M., Humeau, L. and Slepushkin, V. (2004) ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive haematopoietic progenitor cells. Blood, 104, 364-373.
[60] Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R.O., Karlsson, S. and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV Type 1 particles. Proceedings of the National Academy of Sciences of the United States of America, 93, 15266-15271.
[61] Anjos-Alfonso, F., Siapati, E.K. and Bonnet, D. (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. Journal of Cell Science, 117, 5655-5664.
[62] Conget, P.A. and Minguell, J.J. (2000) Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Experimental Hematology, 28, 382-390.
[63] Hung, S.C., Lu, C.Y., Shyue, S.K., Liu, H.C. and Ho, L.L. (2004) Lineage differentiation-associated loss of adenoviral susceptibility and Coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells, 22, 1321-1329.
[64] Song, L., Webb, N.E., Song, Y. and Tuan, R.S. (2006) Identification and functional analysis of candidate genes regulating mesenchymal stem cells self-renewal and multipotency. Stem Cells, 24, 1707-1718.
[65] Hoelters, J., Ciccarella, M., Drechsel, M., Geissler, C., Gülkan, H., B?cker, W., Schieker, M., Jochum, M. and Neth, P. (2005) Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. Journal of Gene Medicine, 7, 718-728.
[66] Peister, A., Mellad, J.A., Wang, M., Tucker, H.A. and Prockop, D.J. (2004) Stable transfection of MSCs by electroporation. Gene Therapy, 11, 224-228.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.