Coronary Stents Fracture: An Engineering Approach (Review)


With the invention of coronary stent, promising clinical outcomes appeared. However, the long-term success of stent has been beaten by significant in-stent restenosis and consequently stents fractures (SF). Cardiologists have been looking on SF as a threat to patients’ life because it is associated with short- and possibly long-term morbidity rate. In this review, stent materials and properties from the perspective of materials engineering and clinical drivers are discussed. The review also outlines how stent materials and design have evolved with time. Opinions are given as to the merit and direction of various on-going and future developments.

Share and Cite:

B. AL-Mangour, R. Mongrain and S. Yue, "Coronary Stents Fracture: An Engineering Approach (Review)," Materials Sciences and Applications, Vol. 4 No. 10, 2013, pp. 606-621. doi: 10.4236/msa.2013.410075.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. D. Mathers, T. Boerma and D. Ma Fat, “Global and Regional Causes of Death,” British Medical Bulletin, Vol. 92, No. 1, 2009, pp. 732.
[2] S. Garg and P. W. Serruys, “Coronary Stents: Current Status,” Journal of the American College of Cardiology, Vol. 56, No. 10, 2010, pp. S1S42.
[3] S. Yusuf, D. Zucker, E. Passamani, P. Peduzzi, T. Takaro, L. D. Fisher, et al., “Effect of Coronary Artery Bypass Graft Surgery on Survival: Overview of 10Year Results from Randomised Trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration,” The Lancet, Vol. 344, No. 8922, 1994, pp. 563570.
[4] F. Shaikh, R. Maddikunta, M. DjelmamiHani, J. Solis, S. Allaqaband and T. Bajwa, “Stent Fracture, an Incidental Finding or a Significant Marker of Clinical InStent Restenosis?” Catheterization and Cardiovascular Inter ventions, Vol. 71, No. 5, 2008, pp. 614618.
[5] M. Nakatani, Y. Takeyama, M. Shibata, M. Yorozuya, H. Suzuki, S. Koba, et al., “Mechanisms of Restenosis after Coronary Intervention: Difference between Plain Old Balloon Angioplasty and Stenting,” Cardiovascular Pathology, Vol. 12, No. 1, 2003, pp. 4048.
[6] N. Kukreja, Y. Onuma, J. Daemen and P. W. Serruys, “The Future of DrugEluting Stents,” Pharmacological Research, Vol. 57, No. 3, 2008, pp. 171180.
[7] D. R. Whittaker and M. F. Fillinger, “The Engineering of Endovascular Stent Technology: A Review,” Vascular and Endovascular Surgery, Vol. 40, No. 2, 2006, pp. 8594.
[8] Y. P. Kathuria, “The Potential of Biocompatible Metallic Stents and Preventing Restenosis,” Materials Science and Engineering: A, Vol. 417, No. 12, 2006, pp. 4048.
[9] G. Maluenda, G. Lemesle and R. Waksman, “A Critical Appraisal of the Safety and Efficacy of DrugEluting Stents,” Clinical Pharmacology and Therapeutics, Vol. 85, No. 5, 2009, pp. 474480.
[10] G. Nakazawa, A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, et al., “Incidence and Predictors of DrugEluting Stent Fracture in Human Coronary Artery: A Pathologic Analysis,” Journal of the American College of Cardiology, Vol. 54, No. 21, 2009, pp. 19241931.
[11] P. S. Chowdhury and R. G. Ramos, “CoronaryStent Fra cture,” New England Journal of Medicine, Vol. 347, No. 8, 2002, p. 581.
[12] M. Carrozza, G. Santoro, M. G. Russo, G. Caianiello and R. Calabrò, “Stress Stent Fracture: Is Stent Angioplasty Really a Safe Therapeutic Option in Native Aortic Coar ctation?” International Journal of Cardiology, Vol. 113, No. 1, 2006, pp. 127128.
[13] R. V. Marrey, R. Burgermeister, R. B. Grishaber and R. O. Ritchie, “Fatigue and Life Prediction for Cobalt Chromium Stents: A Fracture Mechanics Analysis,” Bio materials, Vol. 27, No. 9, 2006, pp. 19882000.
[14] S.H. Lee, J.S. Park, D.G. Shin, Y.J. Kim, G.R. Hong, W. Kim, et al., “Frequency of Stent Fracture as a Cause of Coronary Restenosis after SirolimusEluting Stent Im plantation,” The American Journal of Cardiology, Vol. 100, No. 4, 2007, pp. 627630.
[15] G. Sianos, S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, et al., “Stent Fracture and Restenosis in the DrugEluting Stent Era,” Catheterization and Cardio vascular Interventions, Vol. 61, No. 1, 2004, pp. 111116.
[16] H.S. Kim, Y.H. Kim, S.W. Lee, D.W. Park, C. W. Lee, M.K. Hong, et al., “Incidence and Predictors of Drug Eluting Stent Fractures in Long Coronary Disease,” In ternational Journal of Cardiology, Vol. 133, No. 3, 2009, pp. 354358.
[17] J. Aoki, G. Nakazawa, K. Tanabe, A. Hoye, H. Yama moto, T. Nakayama, et al., “Incidence and Clinical Im pact of Coronary Stent Fracture after SirolimusEluting Stent Implantation,” Catheterization and Cardiovascular Interventions, Vol. 69, No. 3, 2007, pp. 380386.
[18] M. S. Lee, D. Jurewitz, J. Aragon, J. Forrester, R. R. Makkar and S. Kar, “Stent Fracture Associated with DrugEluting Stents: Clinical Characteristics and Impli cations,” Catheterization and Cardiovascular Interven tions, Vol. 69, No. 3, 2007, pp. 387394.
[19] T. Sharkawi, F. Cornhill, A. Lafont, P. Sabaria and M. Vert, “Intravascular Bioresorbable Polymeric Stents: A Potential Alternative to Current Drug Eluting Metal Stents,” Journal of Pharmaceutical Sciences, Vol. 96, No. 11, 2007, pp. 28292837.
[20] A. AlAown, I. Kyriazis, P. Kallidonis, P. Kraniotis, C. Rigopoulos, D. Karnabatidis, et al., “Ureteral Stents: New Ideas, New Designs,” Therapeutic Advances in Urology, Vol. 2, No. 2, 2010, pp. 8592.
[21] P. Poncin and J. Proft, “Stent Tubing: Understanding the Desired Attributes,” Materials & Process for Medical De vices Conference, Anaheim, 810 September 2003, 7p.
[22] P. Poncin, C. Millet, J. Chevry and J. L. Proft, “Compar ing and Optimizing CoCr Tubing Properties for Stent Applications,” Materials & Process for Medical Devices Conference, St. Paul, 2527 August 2004, 6p.
[23] B. O’Brien and W. Carroll, “The Evolution of Cardio vascular Stent Materials and Surfaces in Response to Clinical Drivers: A Review,” Acta Biomaterialia, Vol. 5, No. 4, 2009, pp. 945958.
[24] G. Mani, M. D. Feldman, D. Patel and C. M. Agrawal, “Coronary Stents: A Materials Perspective,” Biomaterials, Vol. 28, No. 9, 2007, pp. 16891710.
[25] T. Hanawa, “Materials for Metallic Stents,” Journal of Artificial Organs, Vol. 12, No. 2, 2009, pp. 7379.
[26] M. Niinomi, “Fatigue Characteristics of Metallic Bioma terials,” International Journal of Fatigue, Vol. 29, No. 6, 2007, pp. 9921000.
[27] R. A. Lula, “Stainless Steel,” American Society for Met als, Russell Township, 1985.
[28] A. J. Sedriks, “Corrosion of Stainless Steel,” 2nd Edition, John Wiley & Sons, Hoboken, 1996.
[29] H. K. Mardis and R. M. Kroeger, “Ureteral Stents. Mate rials,” The Urologic Clinics of North America, Vol. 15, No. 3, 1988, pp. 471479.
[30] A. Raval, A. Choubey, C. Engineer and D. Kothwala, “Development and Assessment of 316LVM Cardiovas cular Stents,” Materials Science and Engineering: A, Vol. 386, No. 12, 2004, pp. 331343.
[31] A. Holton, E. Walsh, A. Anayiotos, G. Pohost and R. Venugopalan, “Comparative MRI Compatibility of 316L Stainless Steel Alloy and NickelTitanium Alloy Stents,” Journal of Cardiovascular Magnetic Resonance, Vol. 4, No. 4, 2002, pp. 423430.
[32] G. T. Burstein, P. C. Pistorius and S. P. Mattin, “The Nucleation and Growth of Corrosion Pits on Stainless Steel,” Corrosion Science, Vol. 35, No. 14, 1993, pp. 5762.
[33] C.C. Shih, C.M. Shih, Y.Y. Su, L. H. J. Su, M.S. Chang and S.J. Lin, “Effect of Surface Oxide Properties on Corrosion Resistance of 316L Stainless Steel for Bio medical Applications,” Corrosion Science, Vol. 46, No. 2, 2004, pp. 427441.
[34] C. L. Liu, P. K. Chu, G. Q. Lin and M. Qi, “AntiCorro sion Characteristics of NitrideCoated AISI 316L Stainless Steel Coronary Stents,” Surface and Coatings Technology, Vol. 201, No. 6, 2006, pp. 28022806.
[35] R. Koster, D. Vieluf, M. Kiehn, M. Sommerauer, J. Kahler, S. Baldus, et al., “Nickel and Molybdenum Con tact Allergies in Patients with Coronary InStent Resteno sis,” The Lancet, Vol. 356, No. 9245, 2000, pp. 18951897.
[36] Y. Okazaki and E. Gotoh, “Metal Release from Stainless Steel, CoCrMoNiFe and NiTi Alloys in Vascular Implants,” Corrosion Science, Vol. 50, No. 12, 2008, pp. 34293438.
[37] M. Assad, N. Lemieux, C. H. Rivard and L. H. Yahia, “Comparative in Vitro Biocompatibility of NickelTita nium, Pure Nickel, Pure Titanium, and Stainless Steel: Genotoxicity and Atomic Absorption Evaluation,” Bio Medical Materials and Engineering, Vol. 9, No. 1, 1999, pp. 112.
[38] K. Otsuka and X. Ren, “Physical Metallurgy of TiNi Based Shape Memory Alloys,” Progress in Materials Sci ence, Vol. 50, No. 5, 2005, pp. 511678.
[39] J. M. McNaney, V. Imbeni, Y. Jung, P. Papadopoulos and R. O. Ritchie, “An Experimental Study of the Superelas tic Effect in a ShapeMemory Nitinol Alloy under Biaxial Loading,” Mechanics of Materials, Vol. 35, No. 10, 2003, pp. 969986.
[40] A. L. McKelvey and R. O. Ritchie, “FatigueCrack Pro pagation in Nitinol, a ShapeMemory and Superelastic Endovascular Stent Material,” Journal of Biomedical Ma terials Research, Vol. 47, No. 3, 1999, pp. 301308.<301::AIDJBM3>3.0.CO;2H
[41] J. M. Stankiewicz, S. W. Robertson and R. O. Ritchie, “FatigueCrack Growth Properties of ThinWalled Su perelastic Austenitic Nitinol Tube for Endovascular Stents,” Journal of Biomedical Materials Research Part A, Vol. 81A, No. 3, 2007, pp. 685691.
[42] K. Gall, J. Tyber, G. Wilkesanders, S. W. Robertson, R. O. Ritchie and H. J. Maier, “Effect of Microstructure on the Fatigue of HotRolled and ColdDrawn NiTi Shape Memory Alloys,” Materials Science and Engineering: A, Vol. 486, No. 12, 2008, pp. 389403.
[43] D. Stoeckel, A. Pelton and T. Duerig, “SelfExpanding Nitinol Stents: Material and Design Considerations,” European Radiology, Vol. 14, No. 2, 2004, pp. 292301.
[44] C.C. Shih, S.J. Lin, Y.L. Chen, Y.Y. Su, S.T. Lai, G. J. Wu, et al., “The Cytotoxicity of Corrosion Products of Nitinol Stent Wire on Cultured Smooth Muscle Cells,” Journal of Biomedical Materials Research, Vol. 52, No. 2, 2000, pp. 395403.<395::AIDJBM21>3.0.CO;2B
[45] S. A. Shabalovskaya, “Surface, Corrosion and Biocom patibility Aspects of Nitinol as an Implant Material,” BioMedical Materials and Engineering, Vol. 12, No. 1, 2002, pp. 69109.
[46] T. Duerig, A. Pelton and D. Stockel, “An Overview of Nitinol Medical Applications,” Materials Science and Engineering: A, Vol. 273275, 1999, pp. 149160.
[47] B. Thierry, Y. Merhi, L. Bilodeau, C. Trépanier and M. Tabrizian, “Nitinol versus Stainless Steel Stents: Acute Thrombogenicity Study in an ex Vivo Porcine Model,” Biomaterials, Vol. 23, No. 14, 2002, pp. 29973005.
[48] US Food and Drug Administration CfDaRH, “MultiLink Visiontm RX & OTW Coronary Stent SystemP020047,” 2003.
[49] D. J. Kereiakes, D. A. Cox, J. B. Hermiller, M. G. Midei, W. B. Bachinsky, E. D. Nukta, et al., “Usefulness of a Cobalt Chromium Coronary Stent Alloy,” American Journal of Cardiology, Vol. 92, No. 4, 2003, pp. 463466.
[50] M. Niinomi, “Recent Metallic Materials for Biomedical Applications,” Metallurgical and Materials Transactions A, Vol. 33, No. 3, 2002, pp. 477486.
[51] B. J. O’Brien, J. S. Stinson, S. R. Larsen, M. J. Eppihimer and W. M. Carroll, “A PlatinumChromium Steel for Cardiovascular Stents,” Biomaterials, Vol. 31, No. 14, 2010, pp. 37553761.
[52] Z. M. Hijazi, M. Homoud, M. J. Aronovitz, J. J. Smith and G. T. Faller, “A New Platinum BalloonExpandable stent (Angiostent) Mounted on a High Pressure Balloon: Acute and Late Results in an Atherogenic Swine Model,” The Journal of Invasive Cardiology, Vol. 7, No. 5, 1995, pp. 127134.
[53] B. Bhargava, I. De Scheerder, Q. B. Ping, H. Yanming, R. Chan, H. Soo Kim, et al., “A Novel PlatinumIridium, Potentially Gamma Radioactive Stent: Evaluation in a Porcine Model,” Catheterization and Cardiovascular In terventions, Vol. 51, No. 3, 2000, pp. 364368.<364::AIDCCD28>3.0.CO;2D
[54] D. W. Trost, H. L. Zhang, M. R. Prince, P. A. Winchester, Y. Wang, R. Watts, et al., “ThreeDimensional MR An giography in Imaging Platinum Alloy Stents,” Journal of Magnetic Resonance Imaging, Vol. 20, No. 6, 2004, pp. 975980.
[55] J. B. Park, “Metallic Implant Materials,” Plenum Press, New York, 1987.
[56] R. Foti, C. Tamburino, A. R. Galassi, G. Russo, A. Nico sia, R. Grassi, et al., “Safety, Feasibility and Efficacy of a New SingleWire Stent in the Treatment of Complex Coronary Lesions: The Angiostent,” Cardiologia, Vol. 43, No. 7, 1998, pp. 725730.
[57] P. F. Johnson, J. J. Bernstein, G. Hunter, W. W. Dawson and L. L. Hench, “An in Vitro and in Vivo Analysis of Anodized Tantalum Capacitive Electrodes: Corrosion Response, Physiology, and Histology,” Journal of Bio medical Materials Research, Vol. 11, No. 5, 1977, pp. 637656.
[58] K. H. Barth, R. Virmani, J. Froelich, T. Takeda, S. V. Lossef, J. Newsome, et al., “Paired Comparison of Vas cular Wall Reactions to Palmaz Stents, Strecker Tantalum Stents, and Wallstents in Canine Iliac and Femoral Arter ies,” Circulation, Vol. 93, No. 12, 1996, pp. 21612169.
[59] G. Teitelbaum, M. Raney, M. Carvlin, A. Matsumoto and K. Barth, “Evaluation of Ferromagnetism and Magnetic Resonance Imaging Artifacts of the Strecker Tantalum Vascular Stent,” CardioVascular and Interventional Ra diology, Vol. 12, No. 3, 1989, pp. 125127.
[60] S. V. Lossef, R. J. Lutz, J. Mundorf and K. H. Barth, “Comparison of Mechanical Deformation Properties of Metallic Stents with Use of StressStrain Analysis,” Jour nal of Vascular and Interventional Radiology, Vol. 5, No. 2, 1994, pp. 341349.
[61] J. Dyet, W. Watts, D. Ettles and A. Nicholson, “Me chanical Properties of Metallic Stents: How Do These Properties Influence the Choice of Stent for Specific Le sions? CardioVascular and Interventional Radiology, Vol. 23, No. 1, 2000, pp. 4754.
[62] J. E. Sousa, P. W. Serruys and M. A. Costa, “New Fron tiers in Cardiology: DrugEluting Stents: Part I,” Circula tion, Vol. 107, No. 17, 2003, pp. 22742279.
[63] M. Moravej and D. Mantovani, “Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities,” International Journal of Molecular Sci ences, Vol. 12, No. 7, 2011, pp. 42504270.
[64] F.T. Chung, S.M. Lin, H.C. Chen, C.L. Chou, C.T. Yu, C.Y. Liu, et al., “Factors Leading to Tracheobron chial SelfExpandable Metallic Stent Fracture,” The Journal of Thoracic and Cardiovascular Surgery, Vol. 136, No. 5, 2008, pp. 13281335.
[65] K. J. Miller, “Materials Science Perspective of Metal Fatigue Resistance,” Materials Science and Technology, Vol. 9, No. 6, 1993, pp. 453462.
[66] B. P. Murphy, P. Savage, P. E. McHugh and D. F. Quinn, “The StressStrain Behavior of Coronary Stent Struts Is Size Dependent,” Annals of Biomedical Engineering, Vol. 31, No. 6, 2003, pp. 686691.
[67] B. Murphy, H. Cuddy, F. Harewood, T. Connolley and P. McHugh, “The Influence of Grain Size on the Ductility of MicroScale Stainless Steel Stent Struts,” Journal of Ma terials Science: Materials in Medicine, Vol. 17, No. 1, 2006, pp. 16.
[68] F. Etave, G. Finet, M. Boivin, J.C. Boyer, G. Rioufol and G. Thollet, “Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis,” Journal of Biomechanics, Vol. 34, No. 8, 2001, pp. 10651075.
[69] J. R. Davis, “Handbook of Materials for Medical De vices,” ASM International, Russell Township, 2003.
[70] K. Takahata, Y. B. Gianchandani, “A Planar Approach for Manufacturing Cardiac Stents: Design, Fabrication, and Mechanical Evaluation,” Microelectromechanical Systems, Vol. 13, No. 6, 2004, pp. 933939.
[71] A. Schuessler, “Manufacturing of Stents: Optimize the Stent with New Manufacturing Technology,” 2007.
[72] Y. P. Kathuria, “The Potential of Biocompatible Metallic Stents and Preventing Restenosis,” Materials Science and Engineering: A, Vol. 417, No. 12, 2006, pp. 4048.
[73] D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, et al., “Prevalence and Clinical Impact of Stent Fractures after Femoropopliteal Stent ing,” Journal of the American College of Cardiology, Vol. 45, No. 2, 2005, pp. 312315.
[74] A. Halkin, S. Carlier and M. B. Leon, “Late Incomplete Lesion Coverage Following Cypher Stent Deployment for Diffuse Right Coronary Artery Stenosis,” Heart, Vol. 90, No. 8, 2004, p. e45.
[75] P.K. Min, Y.W. Yoon and H. Moon Kwon, “Delayed Strut Fracture of SirolimusEluting Stent: A Significant Problem or an Occasional Observation?” International Journal of Cardiology, Vol. 106, No. 3, 2006, pp. 404406.
[76] C. Heintz, G. Riepe, L. Birken, E. Kaiser, N. Chakfé, M. Morlock, et al., “Corroded Nitinol Wires in Explanted Aortic Endografts: An Important Mechanism of Failure?” Journal of Endovascular Therapy, Vol. 8, No. 3, 2001, pp. 248253.<0248:CNWIEA>2.0.CO;2
[77] C.C. Shih, S.J. Lin, K.H Chung, Y.L Chen and Y.Y. Su, “Increased Corrosion Resistance of Stent Materials by Converting Current Surface Film of Polycrystalline Oxide into Amorphous Oxide,” Journal of Biomedical Materials Research, Vol. 52, No. 2, 2000, pp. 323332.<323::AIDJBM11>3.0.CO;2Z
[78] M. H. Wholey, “Designing the Ideal Stent,” Endovascu lar Today, Vol. 6, 2007, pp. 2534.
[79] M. Schillinger, M. Gschwendtner, B. Reimers, J. Trenkler, L. Stockx, J. Mair, et al., “Does Carotid Stent Cell Design Matter?” Stroke, Vol. 39, No. 3, 2008, pp. 905909.
[80] B.K. Koo and P. J. Fitzgerald, “Novel Coronary Stent Platforms,” Korean Circulation Journal, Vol. 38, No. 8, 2008, pp. 393397.
[81] A. Abizaid, J. J. Popma, L. F. Tanajura, K. Hattori, B. Solberg, C. Larracas, et al., “Clinical and Angiographic Results of Percutaneous Coronary Revascularization Us ing a Trilayer Stainless SteelTantalumStainless Steel PhosphorylcholineCoated Stent: The TriMaxx Trial,” Catheterization and Cardiovascular Interventions, Vol. 70, No. 7, 2007, pp. 914919.
[82] G. SydowPlum and M. Tabrizian, “Review of Stent Coating Strategies: Clinical Insights,” Materials Science and Technology, Vol. 24, No. 9, 2008, pp. 11271143.
[83] T. Norgaz, G. Hobikoglu, Z. A. Serdar, H. Aksu, A. T. Alper, O. Ozer, et al., “Is There a Link between Nickel Allergy and Coronary Stent Restenosis?” The Tohoku Journal of Experimental Medicine, Vol. 206, No. 3, 2005, pp. 243246.
[84] A. Grill, “DiamondLike Carbon Coatings as Biocom patible Materials—An Overview,” Diamond and Related Materials, Vol. 12, No. 2, 2003, pp. 166170.
[85] R. Hauert, “A Review of Modified DLC Coatings for Biological Applications,” Diamond and Related Materi als, Vol. 12, No. 37, 2003, pp. 583589.
[86] R. K. Roy and K.R. Lee, “Biomedical Applications of DiamondLike Carbon Coatings: A Review,” Journal of Biomedical Materials Research Part B: Applied Biomate rials, Vol. 83B, No. 1, 2007, pp. 7284.
[87] K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, et al., “In Vitro Analyses of DiamondLike Carbon Coated Stents: Reduction of Metal Ion Release, Platelet Activation, and Thrombogenicity,” Thrombosis Research, Vol. 99, No. 6, 2000, pp. 577585.
[88] F. Airoldi, A. Colombo, D. Tavano, G. Stankovic, S. Klugmann, V. Paolillo, et al., “Comparison of Diamond Like CarbonCoated Stents versus Uncoated Stainless Steel Stents in Coronary Artery Disease,” The American Journal of Cardiology, Vol. 93, No. 4, 2004, pp. 474477.
[89] T. Hasebe, S. Yohena, A. Kamijo, Y. Okazaki, A. Hotta, K. Takahashi, et al., “Fluorine Doping into Diamond Like Carbon Coatings Inhibits Protein Adsorption and Platelet Activation,” Journal of Biomedical Materials Re search Part A, Vol. 83A, No. 4, 2007, pp. 11921199.
[90] B. AlMangour, R. Dallala, F. Zhim, R. Mongrain and S. Yue, “Fatigue Behavior of Annealed ColdSprayed 316L Stainless Steel Coating for Biomedical Applications,” Materials Letters, Vol. 91, 2013, pp. 352355.
[91] B. AlMangour, R. Mongrain, E. Irissou and S. Yue, “Im proving the Strength and Corrosion Resistance of 316L Stainless Steel for Biomedical Applications Using Cold Spray,” Surface and Coatings Technology, Vol. 216, 2013, pp. 297307.
[92] S. Bagheri and M. Guagliano, “Review of Shot Peening Processes to Obtain Nanocrystalline Surfaces in Metal Alloys,” Surface Engineering, Vol. 25, No. 1, 2009, pp. 314.
[93] F. Gartner, T. Stoltenhoff, T. Schmidt and H. Kreye, “The Cold Spray Process and Its Potential for Industrial Appli cations,” Journal of Thermal Spray Technology, Vol. 15, No. 2, 2006, pp. 223232.
[94] R. Ghelichi, “Coating by the Cold Spray Process: A State of the Art,” Frattura ed Integrità Strutturale, Vol. 8, No. 8, 2009, pp. 3044.
[95] E. Irissou, J.G. Legoux, A. Ryabinin, B. Jodoin and C. Moreau, “Review on Cold Spray Process and Technology: Part I—Intellectual Property,” Journal of Thermal Spray Technology, Vol. 17, No. 4, 2008, pp. 495516.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.