Cyanobacterial Composition of Microbial Mats, Found in Brejo do Espinho and in Artificial Saline of Araruama, RJ, Brazil

Abstract

Microbial mats are organo-sedimentary ecosystems formed by autotrophic and heterotrophic bacterias. Cyanobacteria contribute to the formation of these structures from the entrapment and engulfment of sediments contributing to the formation of carbonate rocks found in the geological record from the Precambrian to the Recent. In this research we identified the living cyanobacteria mats type 1 (gelatinous) and type 2 (cohesives) present in Brejo do Espinho and Araruama saline, east Fluminense, Rio de Janeirostate. The microbial mats type 1, were found in compartiment A and B of Brejo do Espinho and the Araruama saline in the tank with a depth of10 cm. The mats type 2 were only found in compartiment A and in tank with15 cmdepth. In the microbial mats of compartiments A and B predominated the spherical forms of genres Chroococcus Nageli 1948 and Aphanothece Nageli1948. Inthe tanks predominated filamentous forms of the Leptolyngbya Anagnostidis and Komárek 1988 genre. In mats type 1, the diversity indices (H') were 1.95 and 2.24 and in type 2 of 2.16 and 2.14 for the Brejo do Espinho and Araruama saline, respectively. The highest values of diversity indices found in saline tanks occurred by stable salinity conditions.

Share and Cite:

F. Feder, D. Delfino, M. Wanderley and L. Silva, "Cyanobacterial Composition of Microbial Mats, Found in Brejo do Espinho and in Artificial Saline of Araruama, RJ, Brazil," Advances in Microbiology, Vol. 3 No. 6A, 2013, pp. 47-54. doi: 10.4236/aim.2013.36A006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Van Germanden, “Microbial Mats: A Joint Venture,” Marine Geology, Vol. 113, No. 1-2, 2003, pp. 3-25.
http://dx.doi.org/10.1016/0025-3227(93)90146-M
[2] L. K. Baumgartner, R. P. Reid, C. Dupraz, A. W. Decho, D. H. Buckley, J. R. Spear, K. M. Przekop and P. T. Visscher, “Sulphate Reducing Bacteria in Microbial Mat: chaging Paradigms, New Discoveries,” Sediment Geology, Vol. 185, No. 3-4, 2006, pp. 131-145.
http://dx.doi.org/10.1016/j.sedgeo.2005.12.008
[3] D. J. Des Marais, “Biogeochemistry of Hypersaline Microbial Mats Illustrates the Dynamics of Modern Microbial Ecosystems and the Early Evolution of the Biosphere, Biology,” Biology Bulletin, Vol. 204, No. 2, 2003, pp. 160-163.
[4] A. W. Decho, “Microbial Exopolymer Secretion in Ocean Environments: Their Role(s) in Food Webs and Marine Processes,” Oceanography and Marine Biology—Annual Review, Vol. 28, 1990, pp. 73-154.
[5] M. I. Kühl, T. Fenchel and J. Kasmierczak, “Growth, Structure and Calcification Potential of an Artificial Cyanobacterial Mat,” In: W. E. Krumbein, D. M. Paterson and G. Zavarzin, Eds., Fossil and Recent Biofilms the Natural History of the Impact of Life on Planet Earth, Kluwer Academic Publisher, Dordrecht, 2003, pp. 77-102.
[6] N. Noffke, G. Gerdes and T. Klenke, “Benthic Cyanobacteria and Their Influence on the Sedimentary Dynamics of Peritidal Depositional Systems (Siliciclastic, Evaporitic Salty, and Evaporitic Carbonatic),” Earth-Science Reviews, Vol. 62, No. 1-2, 2003, pp. 163-176.
http://dx.doi.org/10.1016/S0012-8252(02)00158-7
[7] F. Garcia-Pichel, U. Nubel, G Muyzer and M. Kuhl, “On Cyanobacterial Community Diversity and Its Quantifications” Cyanobacterial Diversity & Adaptation, Vol. 65, 1999, pp. 422-430.
[8] P. B. S. Primo and C. R. S. F. Bizerril, “Lagoa de Araruama. Perfil Ambiental do Maior Ecossistema Lagunar Hipersalino do Mundo,” SEMADS, Rio de Janeiro, 2002, pp. 33-35.
[9] E. Barbiére and R. Coe Neto, “Spatial and Temporal Variation of Rainfall of the East Fluminense Coast and Atlantic Serra do Mar, State of Rio de Janeiro, Brazil,” In: B. Knoppers, E. D. Bidone and J. J. Abrao, Eds, Environmental Geochemistry of Coastal Lagoon Systems of Rio de Janeiro, Brazil, FINEP (Série Geoquímica Ambiental 6), Rio de Janeiro, 1999, pp. 25-46.
[10] D. O. Delfino, M. D. Wanderley, L. H. Silva e Silva, F. Feder, F. A. S. Lopes, “Sedimentology and Temporal Distribution of Microbial Mats from Brejo do Espinho, Rio de Janeiro, Brazil,” Sedimentary Geology, Vol. 263-264, 2012, pp. 85-95.
http://dx.doi.org/10.1016/j.sedgeo.2011.08.009
[11] C. F. Barbosa, “Reconstituicao Paleoambiental de Fácies Lagunares com Base em Foraminíferos: O Nível do mar no Quaternário Superior na área de Cabo Frio, RJ,” Ph.D. thesis, University of Sao Paulo, Sao Paulo, 1997.
[12] A. P. A. Anjos, “Caracterizacao da Sedimentacao Atual de Lagoas Costeiras do Litoral do Estado do Rio de Janeiro para Fins de Calibracao de Acordo com as Vacoacoes Paleoambientais e Paleoclimáticas,” Ph.D. Dissertation, Federal University Fluminens, Niterói, 1999.
[13] Y. Van Lith, C. Vasconcelos, R. Warthmann, J. C. F. Martines and J. A. Mckenzie, “Bacterial Sulfate Reduction and Salinity: Two Controls on Dolomite Precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil),” Hydrobiologia, Vol. 485, No. 1-3, 2002, pp. 35-49.
http://dx.doi.org/10.1023/A:1021323425591
[14] A. P. A. Anjos, “Processo de Precipitacao de Dolomita na Lagoa Brejo do Espinho: Uma Contribuicao para Reconstrucao Ambiental,” Ph.D. Thesis, Federal University Fluminens, Niterói, 2004.
[15] B. Kjerfve, “Coastal Lagoon Processes,” Elsevier, Amsterdan, 1994.
[16] P. F. M. Turcq, “Impact Low Salinity Year on the Metabolism of a Hipersalina Coastal Lagoon (Brazil),” Hidrobiologia, Vol. 429, No. 1-3, 2000, pp. 133-140.
http://dx.doi.org/10.1023/A:1004037624787
[17] R. Wit and J. O. Grimalt, 1992 “Microbial Ecosystems in Spanish Coastal Salinas; An Ecological and Geochemical Research of Biomarkers,” Limnetica, Vol. 8, 1992, pp. 205-212.
[18] K. Anagnostidis and J. Komárek, “Modern Approach to the Classification System of Cyanophytes. Archiv für Hidrobiologie,” Algological Studies, Vol. 80, No. 1-4, 1988, pp. 327-472.
[19] J. Komárek and K. Anagnostidis, “Sübwasserflora von Mitteleuropa Band 19/1: Cyanophyta 1. Teil: Chroococcales,” 2nd Edition, Gustav Fischer, Stuttgart, 1999.
[20] U. Nübel, F. Garcia-Pichel, M. Kühl and G. Myzer, “Quantifying Microbial Diversity: Morphotypes, 16 rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats,” Applied and Environmental Microbiology, Vol. 65, No. 2, 1999, pp. 422-430.
[21] o. Hammer, D. A. T. Harper and P. D. Ryan, “Past: Paleontological Statistics Software Package for Education and Data Analysis,” Palaeontologia Electronica, Vol. 4, No. 1, 2001, p. 9.
[22] J. S. Davis, “Structure, Function, and Management of the Biological System for Seasonal Solar Saltwork,” Global Nest: The International Journal, Vol. 2, No. 3, 2001, pp. 217-226.
[23] M. H. C. Baeta Neves and A. J. Casarin, “As Cianofíceas das Salinas de Cabo Frio—Brasil,” Acta Biológia Leopoldinense, Vol. 12, No. 1, 1990, pp. 99-123.
[24] M. A. M. Silva and C. L. Santos, “Halitas das Salinas de Cabo Frio: Reconhecimento das Morfologias como Subsídios para o Entendimento das Halitas Pretéritas,” Boletim de Geociência da Petrobrás, Vol. 11, No. 1-2, 1997, pp. 74-83.
[25] R. M. M. Abed, K. Kohls and D. de Beer, “Effect of Salinity Changes on the Bacterial Diversity, Photosynthesis and Oxygen Consumption of Cyanobacterial Mats from an Intertidal Flat of the Arabian Gulf,” Environmental Microbiology, Vol. 9, No. 6, 2007, pp. 1384-1392.
http://dx.doi.org/10.1111/j.1462-2920.2007.01254.x
[26] U. Nübel, M. M. Bateson, M. K. Madigan and M. D. Ward, “Diversity and Distribution in Hypersaline Microbial Mat of Bacteria Related to Chloroflexus spp.,” Applied and Enviroment Microbiology, Vol. 67, No. 9, 2001, pp. 4361-4365.
http://dx.doi.org/10.1128/AEM.67.9.4365-4371.2001
[27] A. Fourcans, T. G. Oteyza, A. Wieland and A. Solé, “Characterization of Functional Bacterial Groups in a Hypersaline Microbial Mat Community (Saline-de-Gi-raud, Camargue, France),” FEMS Microbiology Ecology, Vol. 51, No. 1, 2004, pp. 55-70.
http://dx.doi.org/10.1016/j.femsec.2004.07.012
[28] L. Casillas-Martínez, M. L. Gonzalez, Z. Fuentes-Figue-rosa, C. M. Castro, W. Ramirez, R. E. Systema, J. PerezJimenez and P. T. Visscher, “Community Structure, Geochemical Characteristics and Mineralogy of a Hypersaline Microbial Mat, Cabo Rojo, PR,” Geomicrobiology Journal, Vol. 22, No. 6, 2005, pp. 269-281.
http://dx.doi.org/10.1080/01490450500182672
[29] C. L. Ortiz, “Species Richness of Cyanobacterial, Diatoms, and Ciliates in Microbial Mats of the Cabo Rojo Salterns, Puerto Rico,” Ph.D. Dissertation, Universidade de Porto Rico, 2008.
[30] C. Dermegasso, G. Chong, P. Galleguillos, L. Escudero, M. Martínez-Alonso and I. Esteves, “Tapestes Microbianos del Salar de Ilamará, Norte del Chile,” Revista Chilena de Historia Natural, Vol. 76, No. 3, 2003, pp. 485- 499.
[31] I. Esteve, M. Martínez-Alonso, J. Mir and R. Guerrero, “Distribuition, Typology and Structure of Microbial Mat Communities in Spain: A Preliminary Research,” Limnetica, Vol. 8, 1992, pp. 185-195.
[32] G. H?llfors, “Checklist of Baltic Sea Phytoplankton Species (Including Some Heterotrophic Protistan Groups),” Helsinki Commission, Baltic Marine Environment Protection Commission, Filand, 2004.
[33] M. Martínez-Alonso, J. Mir, P. Caumette, N. Gaju, R. Guerrero and I. Esteve, “Distribution of Phototrophic Populations and Primary Prodution in a Microbial Mat from the Ebro Delta, Spain,” International Microbiology, Vol. 7, 2004, pp. 19-25.
[34] E. Rejmánková and J. Komárková, “A Function of Cyanobacterial Mats in Phosphorus-Limited Tropical Wetlands,” Hydrobiology, Vol. 431, No. 2-3, 2000, pp. 135-153. http://dx.doi.org/10.1023/A:1004011318643
[35] P. Caumette, R. Matheron, N. Raymond and J. C. Relexans, “Microbial Mats in the Hypersaline Ponds of Mediterranean Salterns (Salins-de-Giraud, France),” FEMS Microbiology Ecology, Vol. 13, No. 4, 1994, pp. 273-286.
http://dx.doi.org/10.1111/j.1574-6941.1994.tb00074.x
[36] J. Urmeneta and A. Navarrete, “Mineralogical Composition and Biomass Studies of the Microbial Mats Sediments from the Ebro Delta, Spain,” International Microbiology, Vol. 3, No. 2, 2000, pp. 97-101.
[37] U. Nubel, F. Garcia-Pichel, M. Kuhl and G. Muyzer, “Quantifying Microbial Diversity: Morphotypes, 16S rRNA Genes, and Carotenoids of Oxygenic Phototrophs in Microbial Mats,” Applied and Enviromental Microbiology, Vol. 65, No. 2, 1999, pp. 422-430.
[38] L. J. Stal, “Microphytobenthons as Biogeomorphological Force in Intertidal Sediment Stabilization,” Ecological Engineering, 2009.
[39] F. Garcia-Pichel and R. W. Castenholz, “Comparative Anoxygenic Photosynthetic Capacity in 7 Strain of a Thermophilic Cyanobacterium,” Archives of Microbiology, Vol. 153, No. 4, 1990, pp. 344-351.
http://dx.doi.org/10.1007/BF00249003
[40] A. Oren, “Saltern Evaporation Ponds as Model Systems for the Research of Primary Production Processes under Hypersaline Conditions,” Aquatic Microbial Ecology, Vol. 56, No. 2-3, 2009, pp. 193-204.
http://dx.doi.org/10.3354/ame01297
[41] R. E. Ley, J. K. Harris, J. Wilcox, J. R. Spear, S. R. Miller, B. M. Bebout, J. A. Maresca, D. A. Bryant, M. L. Sogin and N. R. Pace, “Unexpected Diversity and Complexity of the Guerrero Negro Hypersaline Microbial Mat,” Applied and Environmental Microbiology, Vol. 72, No. 5, 2006, pp. 3685-3695.
http://dx.doi.org/10.1128/AEM.72.5.3685-3695.2006

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.