[1]
|
M. T. Edmonds, C. I. Pakes and L. Ley, “Self-Consistent Solution of the Schrodinger-Poisson Equations for Hy drogen-Terminated Diamond,” Physical Review B, Vol. 81, No. 8, 2010, Article ID: 85314.
http://dx.doi.org/10.1103/PhysRevB.81.085314
|
[2]
|
B. Sutherland, “Beautiful Models,” World Scientific, Singapore, 2004.
|
[3]
|
O. Ciftja, “A Jastrow Correlation Factor for Two-Di mensional Parabolic Quantum Dots,” Modern Physics Letters B, Vol. No. 26, 2009, p. 3055.
http://dx.doi.org/10.1142/S0217984909021120
|
[4]
|
G. Levai and O. Ozer, “An Exactly Solvable Schrodinger Equation with Finite Positive Position-Dependent Effec tive Mass,” Journal of Mathematical Physics, Vol. 51, 2010, Article ID: 92103.
http://dx.doi.org/10.1063/1.3483716
|
[5]
|
A. R. Plastino, A. Puente, M. Casas, F. Garcias and A. Plastino, “Bound States in Quantum Systems with Posi tion Dependent Effective Masses,” Revista Mexicana de Física, Vol. 46, No. 1, 2000, pp. 78-84.
|
[6]
|
G. Gonzalez, “Relation between Poisson and Schrodinger Equations” American Journal of Physics, Vol. 80, No. 8, 2012, pp. 715-719.
|
[7]
|
P. Harrison, “Quantum Wells, Wires and Dotes,” John Wiley, Hoboken, 2000.
|
[8]
|
G. D. Mahan, “Quantum Mechanics in a Nutshell,” Prin ceton University, Princeton, 2009.
|