[1]
|
[1] A. M. Wazwaz, “The Variational Iteration Method: A Reliable Analytic Tool for Solving Linear and Nonlinear Wave Equations,” Computer and Mathematics with Ap plications, Vol. 54, No. 7-8, 2007, pp. 926-932.
http://dx.doi.org/10.1016/j.camwa.2006.12.038
|
[2]
|
M. Inc and D. J. Evans, “An Efficient Approach to Ap proximate Solutions of Eight-Order Boundary-Value Problems,” International Journal of Computer Mathe matics, Vol. 81, No. 6, 2007, pp. 685-692.
http://dx.doi.org/10.1080/0020716031000120809
|
[3]
|
R. P. Agarwal, “Boundary Value Problems for Higher Order Differential Equations,” World Scientific, Singa pore, 1986. http://dx.doi.org/10.1142/0266
|
[4]
|
S. Chandrasekhar, “Hydrodynamic Hydromagnetic Sta bility,” Clarendon Press, Oxford, New York, 1981.
|
[5]
|
A Boutayeb E. H. Twizell and K. Djidjeli, “Numerical Methods for Eight-, Tenth and Twelfth-Order Eigenvalue Problems Arising in Thermal Instability,” Advances in Computational Mathematics, Vol. 2, No. 4, 1994, pp. 407-436. http://dx.doi.org/10.1007/BF02521607
|
[6]
|
J. H. He, “Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media,” Computer Methods in Applied Mechanics and Engineer ing, Vol. Vol. 167, No. 1-2, 1998, pp. 57-68.
http://dx.doi.org/10.1016/S0045-7825(98)00108-X
|
[7]
|
S. Elham, “Variational Iteration Method—A Kind of Nonlinear Analytical Technique: Some Examples,” In ternational Journal of Non-Linear Mechanics, Vol. 34, No. 4, 1999, pp. 699-708.
http://dx.doi.org/ 10.1016/S0020-7462(98)00048-1
|
[8]
|
M. Yulita, “Variational Method for Outonomous Ordinary Differential Equations,” Applied Mathematics and Com putation, Vol. 114, No. 2-3, 2000, pp. 115-123.
http://dx.doi.org/10.1016/S0096-3003(99)00104-6
|
[9]
|
A. S. Arife, “Variational Theory for Linear Magneto— Elasticity,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 2, No. 4, 2001, pp. 309-316.
|
[10]
|
L. M. Watson and M. R. Scott, “Solving Spline-Colloca tion Approximations to Nonlinear Two-Point Boundary Value Problems by a Homotopy Method,” Applied Ma thematics and Computation, Vol. 24, No. 4, 1987, pp. 333-357.
http://dx.doi.org/10.1016/0096-3003(87)90015-4
|
[11]
|
G. R. Liu and T. Y. Wu, “Differential Quadrature Solu tions of Eight-Order Boundary-Value Differential Equa tions,” Journal of Computational and Applied Mathemat ics, Vol. 145, No. 1, 1973, pp. 223-235.
http://dx.doi.org/10.1016/S0377-0427(01)00577-5
|
[12]
|
T. Mura, M. Inokuti and H. Sekine, “General Use of La grange Multiplier Innonlinear Mathematical Physics,” In: Variational Method in the Mech. of Solids, Pergamon Press, New York, 1978, pp. 156-162.
|
[13]
|
H. A. Watts and M. R. Scott, “A Systematical Collection of Codes for Solving Two-Point BVPs, Numerical Meth ods for Differential Systems,” Academic Press, Waltham, 1976.
|
[14]
|
M. R. Scott and H. A. Watts, “Computational Solutions of Linear Two-Point Boundary Value Problems via Or thonormalization,” SIAM Journal on Numerical Analysis, Vol. 14, No. 1, 1977, pp. 40-70.
http://dx.doi.org/10.1137/0714004
|
[15]
|
G. Akram, S. S. Siddiqi and S. Zaheer, “Solution of Eighth Order Boundary Value Problems Using Variational Itera tion Technique,” Submitted in European Journal of Sci entific Research, 2007.
|
[16]
|
S. S. Siddiqi and G Akram, “Solutions of Tenth-Order Boundary Value Problems Using Eleventh Degree Spline,” Applied Mathematics and Computation, Vol. 185, No. 1, 2007, pp. 115-127.
|
[17]
|
S.S Siddiqi and S. Zaheer, “Solutions of Tenth-Order Boundary Value Problems Using Non-Polynomial Spline Technique,” Applied Mathematics and Computation, Vol. 190, 1977, pp. 641-651.
|
[18]
|
S. S. Siddiqi and E. H. Twizell, “Spline Solution of Lin ear Tenth-Order Boundary Value Problems,” Interna tional Journal of Computer Mathematics, Vol. 68, No. 3-4, 1998, pp. 345-362.
http://dx.doi.org/10.1080/00207169808804701
|