Industrial Potentiality of Alluvial Clays Deposits from Cameroon: Influence of Lateritic Clayey Admixture for Fired Bricks Production


The cartography and characterization of an alluvial clay deposit from Ebebda (Central region of Cameroon) were carried out in order to assess its suitability for the production of fired clay bricks. The clayey area investigated is ~ 50,000 m2 with an average thickness of the exploitable layer of 2.2 m, suggesting a deposit of about ~2.2 × 105 tonnes of clay. Mineralogy, physico-chemical and thermal analyses as well as firing properties were performed on representative clay samples. Kaolinite and quartz are the major minerals associated to illite. Upon heating to 900℃ - 1200℃, the linear shrinkage varies from 1.5% to 15%, the water absorption from 1.5% to 24% and the bending strength from 2 to 12 MPa. The admixture of lateritic clays (widely available) at 50%, 60%, 70% and 80% allow to decrease the shrinkage and bending strength, and to increase the water absorption. Overall, properties were satisfying the requirement for fired brick with 70% of laterite in the mixture.

Share and Cite:

A. Nzeukou, V. Kamgang, R. Medjo, U. Melo, A. Njoya, P. Lemougna and N. Fagel, "Industrial Potentiality of Alluvial Clays Deposits from Cameroon: Influence of Lateritic Clayey Admixture for Fired Bricks Production," Journal of Minerals and Materials Characterization and Engineering, Vol. 1 No. 5, 2013, pp. 236-244. doi: 10.4236/jmmce.2013.15037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. H. Murray, “Applied Clay Mineralogy Today and Tomorrow,” Clay Minerals, Vol. 34, No. 1, 1999, pp. 39-49. doi:10.1180/000985599546055
[2] G. M. Reeves, I. Sims and J. C. Cripps, “Clay Materials Used in Construction,” Geological London Society, London, 2006.
[3] H. Baccour, M. Medhioub, T. Jamoussi and A. Daoud, “Mineralogical Evaluation and Industrial Applications of the Triassic Clays Deposits, Southern Tunisia,” Journal of Material Characterization, Vol. 59, No. 11, 2008, pp. 1613-1622. doi:10.1016/j.matchar.2008.02.008
[4] C. Nkoumbou, A. Njoya, D. Njopwouo and R. Wandji, “Intérêt Economique des Matériaux Argileux,” Acte de la Première Conférence sur la Valorisation des Matériaux Argileux au Cameroun, 11 au 12 avril 2001, pp. 1 à 12.
[5] P. M. Thibault and P. Le Berre, “Recherche D’Argile pour Briques dans la Région de Yaoundé, Douala et Edéa,” Rapport BRGM. CRMO 65; MIMEE, Yaoundé, Cameroun, 1985.
[6] P. G. Ntep, J. Dupry, E. Kalngui, O. Matip and A. Fombutu, “Ressources Minérales du Cameroun,” Notice Explicative de la Carte Thématique, MINEE, 2001.
[7] R. Yongue-Fouateu, “Contribution à L’étude Pétrologique de L’Altération et des Faciès de Cuirassement Ferrugineux des Gneiss Migmatitiques de la Région de Yaoundé,” Thèse 3ème cycle Univ. Yaoundé, 1986.
[8] G. F. Ngon Ngon, F. R. Yongue, L. D. Bitom and P. Billong, “A Geological Study of Clayey Laterite and Clayey Hydromorphic Material of the Region of Yaoundé (Cameroon): A Prerequisite for Local Material Promotion,” Journal of African Earth Sciences, Vol. 55, No. 1-2, 2007, pp. 69-78.
[9] J. M. Regnoult, “Synthèse Géologique du Cameroun,” Ministère des Mines, de l’Eau et de l’Energie, République du Cameroun, 1986.
[10] A. B. Tchamba, A. N. Nzeukou, R. F. Tené and U. C. Melo, “Building Potentials of Stabilized Earth Blocks in Yaounde and Douala (Cameroon),” International Journal of Civil Engineering Research, Vol. 3, No. 1, 2012, pp. 1-14.
[11] L. Mbumbia, A. Mertens de Wilmars and J. Tirlocq, “Performance Characteristics of Lateritic Soil Bricks Fired at Low Temperatures: A Case Study of Cameroon,” Construction and Building Materials, Vol. 14, No. 3, 2000, pp. 121-131. doi:10.1016/S0950-0618(00)00024-6
[12] J. P. Nzenti, P. Barbey, J. Macaudière and D. Soba, “Origin and Evolution of Late Precambrian High-Grade Yaounde Gneisses (Cameroon),” Precambrian Research, Vol. 38, No. 2, 1988, pp. 91-109.
[13] S. F. Toteu, W. R. Van schmus, J., Penaye and J. B. Nyobe, “U-Pb and Sm-Nd Evidence for Eburian and Panafrican High Grade Metamorphism in Cratonic Rocks of Southern Cameroon,” Precambrian Research, Vol. 67, No. 3-4, 1994, pp. 321-347. doi:10.1016/0301-9268(94)90014-0
[14] J. E. Prentice, “Evaluation of Brick Clay Reserves,” Transaction of the Institution of Mining and Metallurgy, Section B, Applied Earth Sciences, Vol. 97, No. 1, 1988, pp. 9-14.
[15] J. Konta and R. A. Künher, “Integrated Exploration of Clay Deposits: Some Changes of Strategy,” Applied Clay Sciences, Vol. 11, No. 5-6, 1997, pp. 273-283. doi:10.1016/S0169-1317(96)00027-0
[16] A. Cailleux, “Notice sur le Code des Couleurs des sols,” Boubée, 1992.
[17] D. M. Moore and C. Reynolds Robert Jr., “X-Ray Diffraction and the Identification and Analysis of Clay Minerals,” Oxford University Press, Oxford, 1989.
[18] H. E Cook, P. D Johnson, J. C. Matti and I. Zemmels, “Methods of Sample Preparation and X-Ray Diffraction. Data Analysis, X-Ray Mineralogy Laboratory, Deep Sea Drilling Project,” University of California, Riverside, Contribution n 74-5, 1975, pp. 999-1007.
[19] T. Boski, J. Pessoa, P. Pedro, J. Thorez, J. M. A. Dias and I. R. Hall, “Factors Governing Abundance of Hydrolysable Amino Acids in the Sediments from the N.W. European,” Continental Margin (47-50°N). Progress Oceanography, Vol. 42, No. 1-4, 1998, pp. 145-164. doi:10.1016/S0079-6611(98)00032-9
[20] A. Oliveira, F. Rocha, A. Rodrigues, J. Jouanneau, A. Dias, O. Weber and C. Gomes, “Clays Minerals from the Sedimentary Cover from Northwest Iberian Shelf,” Progress in Oceanography, Vol. 52, No. 2-4, 2002, pp. 233-247. doi:10.1016/S0079-6611(02)00008-3
[21] J. Vidinhia, F. Rocha, C. Andrade, C. Gomes and C. Freitas, “Clays Minerals—A Mineralogical Tool to Distinguish Beach from Dune Sediments,” Journal of Coastal Research, SI50 (Proceedings of the 9th International Coastal Symposium), 2007, pp. 216-220.
[22] ASTM—America Society for Testing Materials, “Standard Test Method for Particle-Size Analysis of Soils,” 1998, ASTM D-422-63.
[23] ASTM-America Society for Testing Materials, “Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” 2000, ASTM D-4318.
[24] ASTM-American Society for Testing and Materials, “Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products,” 1972, C 373-72.
[25] ASTM-American Society for Testing and Materials, “Flexural Properties of Ceramic Whiteware Materials,” 1977, C 674-77.
[26] C. I. Fialips, S. Petit and A. Decarreau, “Hydrothermal Formation of Kaolinite from Various Metakaolins,” Clays Minerals, Vol. 35, No. 3, 1999, pp. 559-572. doi:10.1180/000985500547025
[27] O. Lietard, “Contribution a L’étude des Propriétés Physicochimiques, Cristallographiques et Morphologiques Des kaolins,” Thèse d’Etat, Ins. Polytech. Lorraine, Nancy, 1977.
[28] J. M. Cases, O. Lietard, J. Yvon and J. F. Delon, “Etude des Propriétés Cristallochimiques, Morphologiques, Superficielles de Kaolinites Désordonnées,” Bullettin Minéralogique, Vol. 105, No. 5, 1982, pp. 439-456.
[29] J. M. Amigo, J. Bastida, A. Sanz, M. Signes and J. Serra- no, “Crystallinity of Lower Cretaceous Kaolinites of Teruel (Spain),” Applied Clay Sciences, Vol. 9, No. 1, 1994, pp. 51-69. doi:10.1016/0169-1317(94)90014-0
[30] Th. Delineau, Th. Allard, J. P. Muller, O. Barres, J. Yvon and J. M. Cases, “FTIR Reflectance vs EPR Studies of Structural Iron in Kaolinites,” Clay and Clay Minerals, Vol. 42, No. 3, 1994, pp. 308-320.
[31] G. E. Christidis, “Industrial Clays. European Mineralogical Union, Notes in Mineralogy,” Vol. 9, Chapter 9, 2011, pp. 341-414.
[32] H. Celik, “Technological Characterization and Industrial Application of Two Turkish Clays for the Ceramic Industry,” Applied Clay Science, Vol 50, No. 2, 2010, pp 245-254.
[33] M. Sakizci, B. A. Erdogan and E. Yörükogullari, “Thermal Behavior and Immersion Heats of Selected Clays from Turkey,” Journal of Thermal Analysis Calorimetry, Vol. 98, No. 2, 2009, pp. 429-436.
[34] A. Richer de Forges, C. Feller, M. Jamagne and D. Arrouays, “Etudes et Gestion des Sols,” Vol. 15, No. 2, 2008, pp. 97-111.
[35] D. A. C. Manning, “Introduction to Industrial Mineral,” Chapman & Hall Edition, London, 1995.
[36] J. Lemaitre, J. Leonard and B. Delmon, “The Sequence of Phases in the 900℃ - 1050℃ Transformation of Metakaolinite,” Proceeding of International Clay Conference, Vol. 60, No. 1-2, 1977, pp. 37-43.
[37] C. U. Melo, E. Kamseu and C. Djangang, “Effect of Fluxes on the Fired Properties between 950℃ - 1050℃ of Some Cameroonian Clays,” Tiles & Bricks International, Vol. 19, No. 6, 2003, pp. 57-69.
[38] British Standard Institution, “British Standard Specifications for Clays Bricks,” London, BS 3921, 1985.
[39] J. Y. Y. Andji, A. Abba Toure, G. Kra, J. C. Jumas, J. Yvon and P. Blanchart, “Iron Role on Mechanical Properties of Ceramics with Clays from Ivory Coast,” Ceramics International, Vol. 35, No. 2, 2009, pp. 571-577. doi:10.1016/j.ceramint.2008.01.007
[40] J. Sigg, “Les Produits de Terre Cuites,” Septima, Paris, 1991.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.