Enabling Long-Term Operation of GaAs-Based Sensors


A coating scheme was developed for enabling the operation of a GaAs-based Molecular Controlled Semiconductor Resistor (MOCSER) under biological conditions. Usually GaAs is susceptible to etching in an aqueous environment. Several methods of protecting the semiconductor based devices were suggested previously. However, even when protected, it is very difficult to ensure the operation of a GaAs-based electronic sensor in aqua solution for long periods. We developed a new depositing scheme of (3-mercaptopropyl)-trimethoxysilane (MPTMS) on GaAs substrate consisting of two separate steps. The first involves chemisorption of a dense primary MPTMS layer on the substrate, whereas in the second, a thin MPTMS polymer layer is deposited on the already adsorbed layer, resulting in a 15 - 29 nm thick coating. We show that applying the new MPTMS deposition procedure to GaAs-based MOCSER devices allows up to 15 hours of continuous electrical measurements and stable performance of the sensing device in harsh biological environment. The new protection allows implementing GaAs technology in bioelectronics, particularly in biosensing.

Share and Cite:

M. Tkachev, T. Anand-Kumar, A. Bitler, R. Guliamov and R. Naaman, "Enabling Long-Term Operation of GaAs-Based Sensors," Engineering, Vol. 5 No. 9A, 2013, pp. 1-12. doi: 10.4236/eng.2013.59A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. J. Arregui, “Sensors Based on Nanostructured Materials,” Springer, New York, 2009. doi:10.1007/978-0-387-77753-5
[2] M. S. Makowski and A. Ivanisevic, “Molecular Analysis of Blood with Micro-/Nanoscale Field-Effect-Transistor Biosensors,” Small, Vol. 7, No. 14, 2011, pp. 1863-1875. doi:10.1002/smll.201100211
[3] A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong and J. Voros, “Electrochemical Plasmonic Sensors,” Analytical and Bioanalytical Chemistry, Vol. 402, No. 5, 2012, pp. 1773-1784. doi:10.1007/s00216-011-5404-6
[4] T. Aqua, R. Naaman, A. Aharoni, U. Banin and Y. Paltiel, “Hybrid Nanocrystals-Organic-Semiconductor Light Sensor,” Applied Physics Letters, Vol. 92, No. 2, 2008, Article ID: 223112. doi:10.1063/1.2940230
[5] D. R. Thévenot, K. Toth, R. A. Durst and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Biosensors and Bioelectronics, Vol. 16, No. 1-2, 2001, pp. 121-131. doi:10.1016/S0956-5663(01)00115-4
[6] K. Gartsman, D. Cahen, A. Kadyshevitch, J. Libman, T. Moav, R. Naaman, A. Shanzer, V. Umansky and A. Vilan, “Molecular Control of a GaAs Transistor,” Chemical Physics Letters, Vol. 283, No. 5-6, 1998, pp. 301-306. doi:10.1016/S0009-2614(97)01387-0
[7] D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart and N.T. Linh, “Two-Dimensional Electron Gas m.e.s.f.e.t. Structure,” Electronics Letters, Vol. 16, No. 17, 1980, pp. 667-668.
[8] E. Capua, A. Natan, L. Kronik and R. Naaman, “The Molecularly Controlled Semiconductor Resistor: How does it work?” ACS Applied Materials & Interfaces, Vol. 1, No. 11, 2009, pp. 2679-2683.
[9] M. R. Vilar, J. El-Beghdadi, F. Debontridder, R. Naaman, A. Arbel, A. M. Ferraria and A. M. B. Do Rego, “Development of Nitric Oxide Sensor for Asthma Attack Prevention,” Materials Science and Engineering, Vol. 26, No. 2-3, 2006, pp. 253-259. doi:10.1016/j.msec.2005.10.064
[10] E. Capua, R. Cao, C. N. Sukenik and R. Naaman, “Detection of Triacetone Triperoxide (TATP) with an Array of Sensors Based on Non-Specific Interactions,” Sensors and Actuators B: Chemical, Vol. 140, No. 1, 2009, pp. 122-127. doi:10.1016/j.snb.2009.04.045
[11] D. Bavli, M. Tkachev, H. Piwonski, E. Capua, I. de Albuquerque, D. Bensimon, G. Haran and R. Naaman, “Detection and Quantification through a Lipid Membrane Using the Molecularly Controlled Semiconductor Resistor,” Langmuir, Vol. 28, No. 1, 2012, pp. 1020-1028. doi:10.1021/la203502b
[12] A. K. Tatikonda, M. Tkachev and R. Naaman, “A Highly Sensitive Hybrid Organic-Inorganic Sensor for Continuous Monitoring of Hemoglobin,” Biosensors and Bioelectronics, Vol. 45, 2013, pp. 201-205. doi:10.1016/j.bios.2013.01.040
[13] R. Naaman, “Molecular Controlled Nano-Devices,” Physical Chemistry Chemical Physics, Vol. 13, No. 29, 2011, pp. 13153-13161. doi:10.1039/c1cp21106d
[14] M. R. Vilar, J. El Beghdadi, F. Debontridder, R. Artzi, R. Naaman, A. M. Ferraria and A. M. B. Do Rego, “Characterization of Wet-Etched GaAs (100) Surfaces,” Surface and Interface Analysis, Vol. 37, No. 8, 2005, pp. 673-682. doi:10.1002/sia.2062
[15] A. M. Green and W. E. Spicer, “Do We Need a New Methodology for GaAs Passivation?” Journal of Vacuum Science & Technology A, Vol. 11, No. 4, 1993, pp. 10611069. doi:10.1116/1.578442
[16] F. Seker, K. Meeker, T. F. Kuech and A. B. Ellis, “Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing,” Chemical Reviews, Vol. 100, No. 7, 2000, pp. 2505-2536. doi:10.1021/cr980093r
[17] V. N. Bessolov, M. V. Lebedev, A. F. Ivankov, W. Bauhofer and D. R. T. Zahn, “Electronic Properties of GaAs(100) Surface Passivated in Alcoholic Sulfide Solutions,” Applied Surface Science, Vol. 133, No. 1-2, 1998, pp. 17-22. doi:10.1016/S0169-4332(98)00189-5
[18] E. V. Konenkova, “Modification of GaAs(100) and GaN(0001) surfaces by treatment in alcoholic sulfide solutions,” Vacuum, Vol. 67, No. 1, 2002, pp. 43-52. doi:10.1016/S0042-207X(02)00199-9
[19] S. R. Lunt, G. N. Ryba, P. G. Santangelo and N. S. Lewis, “Chemical Studies of the Passivation of GaAs Surface Recombination Using Sulfides and Thiols,” Journal of Applied Physics, Vol. 70, No. 12, 1991, pp. 7449-7467. doi:10.1063/1.349741
[20] X. Ding and J. J. Dubowski, “Surface Passivation of (001) GaAs with Self-Assembled monolayers of Long-Chain Thiols,” Proceedings of the SPIE, Vol. 5713, 2005, pp. 545-551. doi:10.1117/12.605649
[21] P. Arudra, G. M. Marshall, N. Liu, and J. J. Dubowski, “Enhanced Photonic Stability of GaAs in Aqueous Electrolyte Using Alkanethiol Self-Assembled Monolayers and Postprocessing with Ammonium Sulfide,” The Journal of Physical Chemistry C, 2012, Vol. 116, No. 4, pp. 2891-2895. doi:10.1021/jp208604v
[22] T. Hou, C. M. Greenlief, S. W. Keller, L. Nelen and J. F. Kauffman, “Passivation of GaAs (100) with an Adhesion Promoting Self-Assembled Monolayer,” Chemistry of Materials, Vol. 9, No. 12, 1997, pp. 3181-3186. doi:10.1021/cm9704995
[23] C. Kirchner, M. George, B. Stein, W. J. Parak, H. E. Gaub and M. Seitz, “Corrosion Protection and LongTerm Chemical Functionalization of Gallium Arsenide in an Aqueous Environment,” Advanced Functional Materials, Vol. 12, No. 4, 2002, pp. 266-276.
[24] N. Nishiyama, K. Horie and T. Asakura, “Adsorption Behavior of a Silane Coupling Agent onto a Colloidal Silica Surface Studied by 29Si NMR Spectroscopy,” Journal of Colloid and Interface Science, Vol. 129, No. 1, 1989, pp. 113-119. doi:10.1016/0021-9797(89)90420-7
[25] Gelest, Inc., “Silane Coupling Agents: Connecting Across Boundaries,” 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.