The Profile of Abundant and Essential Fatty Acids in Depot Fat Varies More in Kiwi (Apteryx mantelli) than in Other Avian Species

Abstract

Direct and dendrographic comparison of the profiles of abundant fatty acids in depot fat was unable to separate 10 avian species on a basis of their overall proportions but was able to distinguish broad dietary groups or those in a habitat with distinctive nutritional characteristics such as avian marine carnivores. In all species considered, including North Island brown kiwi (Apteryx mantelli), oleic (C18:1) and palmitic acids (C16:0) were most abundant. The relative proportions of linolenic (C18:3) acid were 4% or lower across all species, while the relative proportions of palmitoleic acid (C18:0) were less than 7% in nine of the avian species, with the exception being the insectivorous red-eyed vireo (Vireo olivaceous). The levels of linoleic acid (C18:2) were lower in avian marine carnivores than in avian herbivores, insectivores, and omnivores. Whilst the mean values of the individual fatty acids in fat from various avian species were separated by hierarchical cluster analysis, the wide range of values of each fatty acid precluded any correlation of clustering with any known variation in dietary items. Similarly, the wide range in fatty acid composition of kiwi fat rendered it unhelpful in determining the optimum composition of the captive diet.

Share and Cite:

M. Potter, C. Minson and R. Lentle, "The Profile of Abundant and Essential Fatty Acids in Depot Fat Varies More in Kiwi (Apteryx mantelli) than in Other Avian Species," Food and Nutrition Sciences, Vol. 4 No. 9A, 2013, pp. 158-164. doi: 10.4236/fns.2013.49A1023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. J. Iverson, C. Field, W. D. Bowen and W. Blanchard, “Quantitative Fatty Acid Signature Analysis: A New Method of Estimating Predator Diets,” Ecological Monographs, Vol. 74, No. 2, 2004, pp. 211-235. doi:10.1890/02-4105
[2] O. Grahl-Nielsen and O. Mjaavatten, “Dietary Influence on Fatty Acid Composition of Blubber Fat of Seals as Determined by Biopsy: A Multivariate Approach,” Marine Biology, Vol. 110, No. 1, 1991, pp. 59-64. doi:10.1007/BF01313092
[3] M. J. Walton, R. J. Henderson and P. P. Pomeroy, “Use of Blubber Fatty Acid Profiles to Distinguish Dietary Differences between Grey Seals Halichoerus grypus from Two UK Breeding Colonies,” Marine Ecology Progress Series, Vol. 193, 2000, pp. 201-208. doi:10.3354/meps193201
[4] O. Grahl-Nielsen, M. Andersen, A. E. Derocher, C. Lydersen, O. Wiig and K. M. Kovacs, “Fatty Acid Composition of the Adipose Tissue of Polar Bears and of Their Prey: Ringed Seals, Bearded Seals and Harp Seals,” Marine Ecology Progress Series, Vol. 265, 2003, pp. 275282. doi:10.3354/meps265275
[5] B. C. McMeans, M. T. Arts and A. T. Fisk, “Similarity between Predator and Prey Fatty Acid Profiles Is Tissue Dependent in Greenland Sharks (Somniosus microcephalus): Implications for Diet Reconstruction,” Journal of Experimental Marine Biology and Ecology, Vol. 429, 2012, pp. 55-63. doi:10.1016/j.jembe.2012.06.017
[6] L. Meynier, P. C. H. Morel, B. L. Chilvers, D. D. S. Mackenzie and P. J. Duignan, “Quantitative Fatty Acid Signature Analysis on New Zealand Sea Lions: Model Sensitivity and Diet Estimates,” Journal of Mammalogy, Vol. 91, No. 6, 2010, pp. 1484-1495. doi:10.1644/09-MAMM-A-299.1
[7] R. McPherson and G. A. Spiller, “Effects of Dietary Fatty Acids and Cholesterol on Cardiovascular Disease Risk Factors in Man,” In: G. A. Spiller, Ed., Handbook of Lipids in Human Nutrition, CRC Press, Inc., New York, 1996.
[8] T. P. Hilditch, “The Chemical Constitution of Natural Fats,” 3rd Edition, Chapman and Hall, London, 1956.
[9] C. R. Blem, “Patterns of Lipid Storage and Utilization in Birds,” American Zoologist, Vol. 16, No. 4, 1976, pp. 671-684.
[10] F. Lynen, “On the Structure of Fatty Acid Synthetase of Yeast,” European Journal of Biochemistry, Vol. 112, No. 3, 1980, pp. 431-442. doi:10.1111/j.1432-1033.1980.tb06105.x
[11] S. M. Watkins and J. B. German, “Omega Fatty Acids,” In: C. C. Akoh and D. B. Min, Eds., Food Lipids, Marcel Dekker, Inc., New York, 1998.
[12] F. B. Shorland, “Effect of the Dietary Fat on the Composition of the Depot Fats of Animals,” Nature, Vol. 165, No. 4202, 1950, p. 766. doi:10.1038/165766a0
[13] J. A. Lovern, “The Body Fats of Some Sea Birds,” Biochemical Journal, Vol. 32, No. 12, 1938, pp. 2142-2144.
[14] S. J. Turunen, “Lipid Utilization in Adult Pieris brassicae with Special Reference to the Role of Linoleic Acid,” Journal of Insect Physiology Vol. 20, No. 7, 1974, pp. 1257-1269. doi:10.1016/0022-1910(74)90231-5
[15] G. C. West and M. S. Meng, “The Effect of Diet and Captivity on the Fatty Acid Composition of Redpoll (Acanthis flammea) Depot Fats,” Comparative Biochemistry and Physiology, Vol. 25, No. 2, 1968, pp. 535-540. doi:10.1016/0010-406X(68)90364-2
[16] D. E. Koch, A. F. Parr and R. A. Merkel, “Fatty Acid Composition of the Inner and Outer Layers of Porcine Backfat as Affected by Energy Level, Sex and Sire,” Journal of Food Science, Vol. 33, No. 2, 1968, pp. 176-180. doi:10.1111/j.1365-2621.1968.tb01345.x
[17] S. D. Phinney, J. S. Stern, K. E. Burke, A. B. Tang, G. Miller and R. T. Holman, “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” American Journal of Clinical Nutrition, Vol. 60, No. 5, 1994, pp. 725-729.
[18] M. Garaulet, F. Perez-Llamas, M. Perez-Ayala, P. Martinez, F. S. de Medina, F. J. Tebar and S. Zamora, “SiteSpecific Differences in the Fatty Acid Composition of Abdominal Adipose Tissue in an Obese Population from a Mediterranean Area,” American Journal of Clinical Nutrition, Vol. 74, 2001, pp. 585-591.
[19] A. C. Guyton and J. E. Hall, “Textbook of Medical Physiology,” Saunders Company, Philadelphia, 1996.
[20] N. B. Pindur, “Gut Morphology and Nutrient Composition of Diets in Wild and Captive North Island Brown Kiwi (Apteryx mantelli),” MSc Thesis, Massey University, Palmerston North, 2004.
[21] G. C. West and M. S. Meng, “Seasonal Changes in Body Weight and Fat and the Relation of Fatty Acid Composition to Diet in the Willow Ptarmigan,” The Wilson Bulletin, Vol. 80, No. 4, 1968, pp. 426-441.
[22] F. B. Shorland and J. P. Gass, “Fatty Acid Composition of the Depot Fats of the Kiwi (Apteryx australis mantelli),” Journal of the Science of Food and Agriculture, Vol. 12, No. 3, 1961, pp. 174-177.
doi:10.1002/jsfa.2740120302
[23] R. D. McGreal and D. S. Farner, “Premigratory Fat Deposition in the Gambel Whitecrowned Sparrow,” Northwest Science, Vol. 30, 1956, pp. 12-23.
[24] Systat Software Inc, “SYSTAT 11: Statistical Software Package,” Systat Software Inc., Chicago, 2004.
[25] M. Chavent, “A Monothetic Clustering Method,” Pattern Recognition Letters, Vol. 19, No. 11, 1998, pp. 989-996. doi:10.1016/S0167-8655(98)00087-7
[26] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function,” Journal of the American Statistical Association, Vol. 58, No. 301, 1963, pp. 236-244. doi:10.1080/01621459.1963.10500845
[27] J. D. Jobson, “Applied Multivariate Data Analysis: Categorical and Multivariate Methods,” Vol. 2, SpringerVerlag, New York, 1992. doi:10.1007/978-1-4612-0921-8
[28] R. Moss and A. K. Lough, “Fatty Acid Composition of Depot Fats in Some Game Birds (Tetraonidae),” Comparative Biochemistry and Physiology, Vol. 25, No. 2, 1968, pp. 559-562. doi:10.1016/0010-406X(68)90368-X
[29] V. G. Thomas and J. C. George, “Plasma and Depot Fat Fatty Acids in Canada Geese in Relation to Diet, Migration, and Reproduction,” Physiological Zoology, Vol. 48, No. 2, 1975, pp. 157-167.
[30] M. E. Heitmeyer and L. H. Fredrickson, “Fatty Acid Composition of Wintering Female Mallards in Relation to Nutrient Use,” The Journal of Wildlife Management, Vol. 54, No. 1, 1990, pp. 54-61.
doi:10.2307/3808900
[31] B. Pierce, S. R. McWilliams, A. R. Place and M. A. Huguenin, “Diet Preferences for Specific Fatty Acids and Their Effect on Composition of Fat Reserves in Migratory Red-Eyed Vireos (Vireo olivaceous),” Comparative Biochemistry and Physiology—Part A: Molecular & Integrative Physiology, Vol. 138, No. 4, 2004, pp. 503-514. doi:10.1016/j.cbpb.2004.06.014
[32] J. M. Klaiman, E. R. Price and C. G. Guglielmo, “Fatty Acid Composition of Pectoralis Muscle Membrane, Intramuscular Fat Stores and Adipose Tissue of Migrant and Wintering White-Throated Sparrows (Zonotrichia albicollis),” Journal of Experimental Biology, Vol. 212, No. 23, 2009, pp. 3865-3872. doi:10.1242/jeb.034967
[33] S. Wang, S. Iverson, A. Springer and S. Hatch, “Fatty Acid Signatures of Stomach Oil and Adipose Tissue of Northern Fulmars (Fulmarus glacialis) in Alaska: Implications for Diet Analysis of Procellariiform Birds,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, Vol. 177, No. 8, 2007, pp. 893-903. doi:10.1007/s00360-007-0187-y
[34] C. C. Cheah and I. A. Hansen, “Stomach Oil and Tissue Lipids of the Petrels Puffinus pacificus and Pterodroma macroptera,” International Journal of Biochemistry, Vol. 1, No. 2, 1970, pp. 203-208. doi:10.1016/0020-711X(70)90095-9
[35] G. E. Napolitano and R. G. Ackman, “Anatomical Distribution of Lipids and Their Fatty Acids in the Semipalmated Sandpiper Calidris pusilla L. from Shepody Bay, New Brunswick, Canada,” Journal of Experimental Marine Biology and Ecology, Vol. 144, No. 2-3, 1990, pp. 113-124. doi:10.1016/0022-0981(90)90023-6
[36] P. Williamson, “Feeding Ecology of the Red-Eyed Vireo (Vireo olivaceus) and Associated Foliage-Gleaning Birds,” Ecological Monographs, Vol. 41, No. 2, 1971, pp. 129-152. doi:10.2307/1942388
[37] F. Bairlein and E. Gwinner, “Nutritional Mechanisms and Temporal Control of Migratory Energy Accumulation in Birds,” Annual Review of Nutrition, Vol. 14, No. 1, 1994, pp. 187-215.
doi:10.1146/annurev.nu.14.070194.001155
[38] J.-M. Weber, “The Physiology of Long-Distance Migration: Extending the Limits of Endurance Metabolism,” Journal of Experimental Biology, Vol. 212, 2009, pp. 593-597. doi:10.1242/jeb.015024
[39] E. R. Price, A. Krokfors and C. G. Guglielmo, “Selective Mobilization of Fatty Acids from Adipose Tissue in Migratory Birds,” Journal of Experimental Biology, Vol. 211, 2008, pp. 29-34. doi:10.1242/jeb.009340
[40] D. W. Johnston, “Cytological and Chemical Adaptations of Fat Deposition in Migratory Birds,” Condor, Vol. 75, No. 1, 1973, pp. 108-113. doi:10.2307/1366540
[41] D. L. Hicks, “Adipose Tissue Composition and Cell Size in Fall Migratory Thrushes (Turdidae),” The Condor, Vol. 69, No. 4, 1967, pp. 387-399. doi:10.2307/1366200
[42] A. A. Spector, “Lipid Metabolism: Essential Fatty Acids,” In: H. M. Stipanuk, Ed., Biochemical and Physiological Aspects of Human Nutrition, W. B. Saunders Company, New York, 2000, pp. 365-383.
[43] A. P. Simopoulos, “Part 1: Metabolic Effects of Omega-3 Fatty Acids and Essentiality,” In: G. A. Spiller, Ed., Handbook of Lipids in Human Nutrition, CRC Press, Inc., New York, 1996.
[44] L. Hartman and F. B. Shorland, “Fatty Acid Composition of the Depot Fats and Liver Lipids of the Takahe (Notornis mantelli),” New Zealand Journal of Science, Vol. 11, 1968, pp. 231-235.
[45] L. Chuecas and J. P. Riley, “Component Fatty Acids of the Total Lipids of Some Marine Phytoplankton,” Journal of the Marine Biological Association of the United Kingdom, Vol. 49, No. 1, 1969, pp. 97-116. doi:10.1017/S0025315400046439
[46] J. D. Wood and M. Enser, “Factors Influencing Fatty Acids in Meat and the Role of Antioxidants in Improving Meat Quality,” British Journal of Nutrition, Vol. 78, No. 1, 1997,
pp. S49-S60. doi:10.1079/BJN19970134
[47] C. R. Blem, “Avian Energy Storage,” In: D. M. Power, Ed., Current Ornithology, Plenum Press, New York, 1990, pp. 59-113.
[48] D. A. Cimprich, F. R. Moore and M. P. Guilfoyle, “Red-Eyed Vireo,” In: A. Poole and F. Gill, Eds., The Birds of North America, The Academy of Natural Sciences, PA and The American Ornithologists’ Union, Washington DC, 2000, pp. 1-24.
[49] R. G. Kleinpaste, “Kiwis in a Pine Forest Habitat,” In: E. Fuller, Ed., Kiwis: A Monograph of the Family Apterygidae, Swan Hill Press, Shrewsbury, 1990, pp. 97-139. doi:10.1007/s003600000157
[50] F. Falkenstein, G. Kortner, K. Watson and F. Geiser, “Dietary Fats and Body Lipid Composition in Relation to Hibernation in Free-Ranging Echidnas,” Journal of Comparative Physiology B, Vol. 171, 2001, pp. 189-194.
[51] D. W. Stanley-Samuelson, R. A. Jurenka, C. Cripps, G. J. Blomquist and M. de Renobales, “Fatty Acids in Insects: Composition, Metabolism, and Biological Significance,” Archives of Insect Biochemistry and Physiology, Vol. 9, No. 1, 1988, pp. 1-33. doi:10.1002/arch.940090102
[52] Z. R. Wharemate, “Survey of the Fatty Acid Content of Native New Zealand Plants,” MSc Thesis, Massey University, Palmerston North, 2003.
[53] M. A. Potter, W. H. Hendriks, R. G. Lentle, D. V. Thomas, C. J. Minson and N. B. Pindur, “An Exploratory Analysis of the Suitability of Diets Fed to a Flightless Insectivore, the Kiwi (Apteryx mantelli), in New Zealand,” Zoo Biology, Vol. 29, No. 5, 2010, pp. 537-550. doi:10.1002/zoo.20283

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.