Insulin-Like Growth Factor-1 and Osteocalcin Are Correlated with Markers of Osteoporosis in Postmenopausal Women with Type-2 Diabetes


Objective: The study was conducted to evaluate the relation between insulin-like growth factor-1 and osteocalcin and markers of bone modulation (osteoprotegerin; OPG, receptor activator nuclear kappa B; RANK and RANK ligand; RANKL) in postmenopausal Type 2 diabetic women with and without osteoporosis. Methods: The study was conducted on 90 female divided into three groups (30 each). Group I included healthy postmenopausal women as a control, Group II included diabetic postmenopausal women without osteoporosis Group III included diabetic postmenopausal women with osteoporosis. Fasting blood samples were obtained for the determination of blood glucose, HbA1c, total and ionized calcium, OPG, RANK and RANKL. Also the levels of IGF-1 and osteocalcin were assessed. Results: In postmenopausal Type 2 diabetic women, the osteoporosis resulted in derangement in OPG/sRANKL system. The serum level of OPG was elevated while sRANKL declines in osteoporotic postmenopausal Type 2 diabetic women. IGF-1 level decreased in diabetic postmenopausal women but those women with osteoporosis showed a great decline by about 60%. IGF-1 level in osteoporotic diabetic postmenopausal women was correlated with BMD and most bone turnover markers (OPG, sRANKL, OPG/sRANKL). Osteocalcin declined significantly only in those women with osteoporosis not without osteoporosis. Conclusions: The circulating levels of OPG and sRANKL were not useful markers for bone status in postmenopausal women while the circulating levels of IGF-1 and osteocalcin might give useful information about bone status in postmenopausal diabetic women.

Share and Cite:

Kamel, M. , Helmy, M. , Rayah, A. , Mohannad, N. and Hania, H. (2013) Insulin-Like Growth Factor-1 and Osteocalcin Are Correlated with Markers of Osteoporosis in Postmenopausal Women with Type-2 Diabetes. Open Journal of Endocrine and Metabolic Diseases, 3, 245-251. doi: 10.4236/ojemd.2013.35033.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] U. Lerner, “Bone Remodeling in Postmenopausal Osteoporosis,” Journal of Dental Research, Vol. 85, No. 7, 2006, pp. 584-595. doi:10.1177/154405910608500703
[2] P. Downey and M. Siegel, “Bone Biology and the Clinical Implications for Osteoporosis,” Physical Therapy, Vol. 86, No. 1, 2006, pp. 77-91. doi:10.1016/j.coph.2005.06.005
[3] P. Kostenuik, “Osteoprotegerin and RANKL Regulate Bone Resorption, Density, Geometery and Strength,” Current Opinion in Pharmacology, Vol. 5, No. 6, 2005, pp. 618-625.
[4] B. Boyce and L. Xing, “Biology of RANK, RANKL, and Osteoprotegerin,” Arthritis Research & Therapy, Vol. 9, Suppl. 1, 2007, p. S1. doi:10.1186/ar2165
[5] E. Canalis, “Insulin-Like Growth Factors and Osteoporosis,” Bone, Vol. 21, No. 3, 1997, pp. 215-216. doi:10.1016/S8756-3282(97)00150-6
[6] M. Zhang, S. Xuan, M. Bouxsein, et al., “OsteoblastSpecific Knockout of the Insulin-Like Growth Factor (IGF) Receptor Gene Reveals an Essential Role of IGF Signaling in Bone Matrix Mineralization,” The Journal of Biological Chemistry, Vol. 277, No. 46, 2002, pp. 44005-44012. doi:10.1074/jbc.M208265200
[7] T. Dowd, J. Rosen and C. Gundberg, “The Three-Dimensional Structure of Bovine Calcium Ion-Bound Osteocalcin Using 1H NMR Spectroscopy,” Biochemistry, Vol. 42, No. 25, 2003, pp. 7769-7779. doi:10.1021/bi034470s
[8] N. Lee, H. Sowa, E. Hinoi, et al., “Endocrine Regulation of Energy Metabolism by the Skeleton,” Cell, Vol. 130, No. 3, 2007, pp. 456-469. doi:10.1016/j.cell.2007.05.047
[9] K. Wongdee and N. Charoenphandhu, “Osteoporosis in Diabetes Mellitus: Possible Cellular and Molecular Mechanisms,” World Journal of Diabetes, Vol. 2, No. 3, 2011, pp. 41-48. doi:10.4239/wjd.v2.i3.41
[10] T. Yamaguchi, “Bone Fragility in Type 2 Diabetes Mellitus,” World Journal of Orthopaedics, Vol. 1, No. 1, 2010, pp. 3-9. doi:10.5312/wjo.v1.i1.3
[11] M. Petit, M. Paudel, B. Taylor, et al., “Bone Mass and Strength in Older Men with Type 2 Diabetes: The Osteoporotic Fractures in Men Study,” Journal of Bone and Mineral Research, Vol. 25, No. 2, 2010, pp. 285-291. doi:10.1359/jbmr.090725
[12] T. Yamaguchi, I. Kanazawa, M. Yamamoto, et al., “Associations between Components of the Metabolic Syndrome versus Bone Mineral Density and Vertebral Fractures in Patients with Type 2 Diabetes,” Bone, Vol. 45, No. 2, 2009, pp. 174-179. doi:10.1016/j.bone.2009.05.003
[13] S. Yaturu, S. Humphrey, C. Landry and S. Jain, “Decreased Bone Mineral Density in Men with Metabolic Syndrome Alone and with Type 2 Diabetes,” Medical Science Monitor, Vol. 15, No. 1, 2009, pp. 5-9.
[14] P. Trinder, “Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor,” Annals of Clinical Biochemistry, Vol. 6, No. 2, 1969, pp. 24-27.
[15] E. Matteucci, V. Cinapri, L. Rossi, et al., “Glycated Hemoglobin Measurement: Intermethod Comparison,” Diabetes, Nutrition & Metabolism, Vol. 14, No. 4, 2001, pp. 217-219.
[16] S. Laxmayya, P. Sandhya and M. Umesh, “Serum Calcium Measurement: Total versus Free (Ionized) Calcium” Indian Journal of Clinical Biochemistry, Vol. 20, No. 2, 2005, pp. 158-161. doi:10.1007/BF02867418
[17] P. Schnatz, K. Marakovits and D. O’Sullivan, “Assessment of Postmenopausal Women and Significant Risk Factors for Osteoporosis,” Obstetrical & Gynecological Survey, Vol. 65, No. 9, 2010, pp. 591-596. doi:10.1097/OGX.0b013e3181fc6d30
[18] H. Zhao, J. Liu, G. Ning, et al., “Relationships between Insulin-Like Growth Factor-I (IGF-I) and OPG, RANKL, Bone Mineral Density in Healthy Chinese Women,” Osteoporosis International, Vol. 19, No. 2, 2008, pp. 221-226. doi:10.1007/s00198-007-0440-y
[19] P. Garnero, E. Sornay-Rendu and P. Delmas, “Low Serum IGF-1 and Occurrence of Osteoporotic Fractures in Postmenopausal Women,” Lancet, Vol. 355, No. 9207, 2000, pp. 898-899. doi:10.1016/S0140-6736(99)05463-X
[20] I. Kanazawa, T. Yamaguchi, M. Yamamoto, et al., “Serum Insulin-Like Growth Factor-I level is Associated with the Presence of Vertebral Fractures in Postmenopausal Women with Type 2 Diabetes Mellitus,” Osteoporosis International, Vol. 18, No. 12, 2007, pp. 1675-1681. doi:10.1007/s00198-007-0430-0
[21] C. Posaci, S. Altunyurt, H. Islekel and A. Onvural, “Effects of HRT on Serum Levels of IGF-I in Postmenopausal Women,” Maturitas, Vol. 40, No. 1, 2001, pp. 69-74. doi:10.1016/S0378-5122(01)00230-4
[22] E. Poehlman, M. Toth, P. Ades, C. Rosen, “Menopause Associated Changes in Plasma Lipids, Insulin-Like Growth Factor-I, and Blood Pressure: A Longitudinal Study,” European Journal of Clinical Investigation, Vol. 27, No. 4, 1997, pp. 322-326. doi:10.1046/j.1365-2362.1997.1160662.x
[23] S. Yakar, C. J. Rosen, “From Mouse to Man: Redefining the Role of Insulin-Like Growth Factor-I in the Acquisition of Bone Mass,” Experimental Biology and Medicine (Maywood), Vol. 228, No. 3, 2003, pp. 245-252.
[24] T. Ueland, “GH/IGF-I and Bone Resorption in Vivo and in Vitro,” European Journal of Endocrinology, Vol. 152, No. 3, 2005, pp. 327-332. doi:10.1530/eje.1.01874
[25] B. Abrahamsen, J. Hjelmborg, P. Kostenuik, et al., “Circulating Amounts of Osteoprotegerin and RANKL: Genetic Influence and Relationship with BMD Assessed in Female Twins” Bone, Vol. 36, No. 4, 2005, pp. 727-735. doi:10.1016/j.bone.2004.12.015
[26] S. Trofimov, I. Pantsulaia, E. Kobyliansky and G. Livshits, “Circulating Levels of Receptor Activator of Nuclear Factor κB Ligand/Osteoprotegerin/Macrophage-Colony Stimulating Factor in a Presumably Healthy Human Population,” European Journal of Endocrinology, Vol. 150, No. 3, 2004, pp. 305-311. doi:10.1530/eje.0.1500305
[27] D. Vega, N. Maalouf and K. Sakhaee, “CLINICAL Review #: the Role of Receptor Activator of Nuclear FactorKappaB (RANK)/RANK Ligand/Osteoprotegerin: Clinical Implications,” The Journal of Clinical Endocrinology & Metabolism, Vol. 92, No. 12, 2007, pp. 4514-4521. doi:10.1210/jc.2007-0646
[28] W. Browner, L. Lui and S. Cummings, “Association of Serum Osteoprotegerin Levels with Diabetes, Strike, Bone Density, Fractures and Mortality in Elderly Women,” The Journal of Clinical Endocrinology & Metabolism, Vol. 86, No. 2, 2001, pp. 631-637. doi:10.1210/jc.86.2.631
[29] G. D. Xiang, L. Xu, L. S. Zhao, et al., “The Relationship between Plasma Osteoprotegerin and Endothelium-Dependent Arterial Dilation in Type 2 Diabetes,” Diabetes, Vol. 55, No. 7, 2006, pp. 2126-2131. doi:10.2337/db06-0231
[30] I. Nabipour, M. Kalantarhormozi, B. Larijani, et al., “Osteoprotegerin in Relation to Type 2 Diabetes Mellitus and the Metabolic Syndrome in Postmenopausal Women,” Metabolism, Vol. 59, No. 5, 2010, pp. 742-747. doi:10.1016/j.metabol.2009.09.019
[31] N. Bucay, I. Sarosi, C. Dunstan, et al., “Osteoprotegerin-Deficient Mice Develop Early Onset Osteoporosis and Arterial Calcification,” Genes & Development, Vol. 12, No. 9, 1998, pp. 1260-1268. doi:10.1101/gad.12.9.1260
[32] R. Mogelvang, S. Pedersen, A. Flyvbjerg, et al., “Comparison of Osteoprotegerin to Traditional Atherosclerotic Risk Factors and High-Sensitivity C-Reactive Protein for Diagnosis of Atherosclerosis,” American Journal of Cardiology, Vol. 109, No. 4, 2012, pp. 515-520. doi:10.1016/j.amjcard.2011.09.043
[33] B. Guldiken, S. Guldiken, B. Turgut, et al., “Serum Osteoprotegerin Levels in Patients with Acute Atherothrombotic Stroke and Lacunar Infarct,” Thrombosis Research, Vol. 120, No. 4, 2007, pp. 511-516. doi:10.1016/j.thromres.2006.12.004
[34] S. Ziegler, S. Kudlacek, A. Luger and E. Minar, “Osteoprotegerin Plasma Concentration Correlates with Severity of Peripheral Artery Disease,” Arteriosclerosis, Vol. 182, No. 1, 2005, pp. 175-180. doi:10.1016/j.atherosclerosis.2005.01.042
[35] P. Collin-Osdoby, L. Rothe, F. Anderson, et al., “Receptor Activator of NF-κB and Osteoprotegerin Expression by Human Microvascular Endothelial Cells, Regulation by Inflammatory Cytokines, and Role in Human Osteoclastogenesis,” The Journal of Biological Chemistry, Vol. 276, No. 23, 2001, pp. 20659-20672. doi:10.1074/jbc.M010153200
[36] L. Lum, B. Wong, R. Josien, J. Becherer, et al., “Evidence for a Role of a Tumor Necrosis Factor-Alpha (TNF-Alpha)-Converting Enzyme-Like Protease in Shedding of TRANCE, a TNF Family Member Involved in Osteoclastogenesis and Dentritic Cell Survival,” The Journal of Biological Chemistry, Vol. 274, No. 19, 1999, pp. 13613-13618. doi:10.1074/jbc.274.19.13613
[37] J. Rubin, C. Ackert-Bicknell, L. Zhu, X. Fan, et al., “IGF-1 Regulates Osteoprotegerin (OPG) and Receptor Activator of Nuclear Factor κB Ligand in Vitro and OPG in Vivo,” The Journal of Clinical Endocrinology & Metabolism, Vol. 87, No. 9, 2002, pp. 4273-4279. doi:10.1210/jc.2002-020656
[38] J. A. Im, B. P. Yu, J. Y. Jeon and S. H. Kim, “Relationship between Osteocalcin and Glucose Metabolism in Postmenopausal Women,” Clinica Chimica Acta, Vol. 396, No. 1-2, 2008, pp. 66-69. doi:10.1016/j.cca.2008.07.001
[39] I. Kanazawa, T. Yamaguchi, Y. Tada, et al., “Serum Osteocalcin Level Is Positively Associated with Insulin Sensitivity and Secretion in Patients with Type 2 Diabetes,” Bone, Vol. 48, No. 4, 2011, pp. 720-725. doi:10.1016/j.bone.2010.12.020
[40] L. McCabe, “Understanding the Pathology and Mechanisms of Type 1 Diabetic Bone Loss,” Journal of Cellular Biochemistry, Vol. 102, No. 6, 2007, pp. 1343-1357. doi:10.1002/jcb.21573

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.