Synthesis of Mesoporous Material from Chrysotile-Derived Silica


Mesoporous MCM-41-type molecular sieves were synthesized using calcined and leached chrysotile and cetyltrimethylammonium bromide as the silica source and structure directing agent, respectively. Powder X-ray diffraction (XRD), N2 isothermal adsorption-desorption, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used to characterize the samples. The calcined and leached chrysotile can be employed as an inexpensive silica source for the formation of low-order MCM-41 mesoporous materials.

Share and Cite:

A. Schwanke, C. Lopes and S. Pergher, "Synthesis of Mesoporous Material from Chrysotile-Derived Silica," Materials Sciences and Applications, Vol. 4 No. 8A, 2013, pp. 68-72. doi: 10.4236/msa.2013.48A009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mineral Commodity Summaries, 2005.
[2] D. M. Bernstein and J. A. Hoskins, “The Health Effects of Chrysotile: Current Perspective Based upon Recent Data,” Toxicology and Pharmacology, Vol. 45, No. 3, 2006, pp. 252-264. doi:10.1016/j.yrtph.2006.04.008
[3] A. Hargreaves and W. H. Taylor, “An X-Ray Examination of Decomposition Products of Chrysotile (Asbestos) and Serpentine,” Mineralogical Magazine, Vol. 27, 1946, p. 204. doi:10.1180/minmag.1946.27.193.05
[4] D. I. Petkowicz, R. T. Rigo, C. Ratdke, S. B. C. Pergher and J. H. Z. Santos, “Zeolite NaA from Brazilian Chrysotile and Rice Husk,” Microporous and Mesoporous Materials, Vol. 116, No. 1-3, 2008, pp. 548-554. doi:10.1016/j.micromeso.2008.05.014
[5] P. Levesque, D. Bianchi, L. V. Mao and G. M. Pajonk, “Effect of Magnesium in the Conversion of Methanol on Chryso-Zeolite or Zeolite ZSM-5 Catalysts,” Applied Catalysis, Vol. 57, No. 1, 1990, pp. 31-43. doi:10.1016/S0166-9834(00)80721-6
[6] R. Le Van Mao, P. Kipkemboi, P. Levesque, A. Vaillancourt and G. Denes, “Asbestos-Derived Zeolites as WaterRetaining Materials in Soils,” Zeolites, Vol. 11, No. 8, 1991, pp. 804-809. doi:10.1016/S0144-2449(05)80059-4
[7] L. Wang, A. Lu, C. Wang, Z. Zheng, D. Zhao and R. Liu, “Nano-Fibriform Production of Silica from Natural Chrysotile,” Journal of Colloid and Interface Science, Vol. 295, No. 2, 2006, pp. 436-439. doi:10.1016/j.jcis.2005.08.055
[8] K. Liu, Q. Feng, Y. Yang, G. Zhang, L. Ou and Y. Lu, “Preparation and Characterization of Amorphous Silica Nanowires from Natural Chrysotile,” Journal of NonCrystalline Solids, Vol. 353, No. 16-17, 2007, pp. 1534-1539. doi:10.1016/j.jnoncrysol.2007.01.033
[9] B. Sophie and L. M. Ocelli, “Synthesis and Characterization of Mesostructured Materials,” Catalysis Reviews, Science and Engineering, Vol. 40, No. 3, 1998, p. 399.
[10] C. T. Kresg, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, Vol. 359, 1992, p. 710. doi:10.1038/359710a0
[11] J. Cejka and H. van Bekkum, “Zeolites and Ordered Mesoporous Materials: Progress and Prospects,” Studies in Surface Science and Catalysis, Vol. 157, No. 9, 2005, p. 394.
[12] S. Chiarakorna, T. Areeroba and N. Grisdanurak, “Influence of Functional Silanes on Hydrophobicity of MCM41 Synthesized from Rice Husk,” “Science and Technology of Advanced Materials, Vol. 8, No. 1-2, 2007, pp. 110-115. doi:10.1016/j.stam.2006.11.011
[13] F. Kang, Q. Wang and S. Xiang, “Synthesis of Mesoporous Al-MCM-41 Materials Using Metakaolin as Aluminum Source,” Materials Letters, Vol. 59, No. 11, 2005, pp. 1426-1429. doi:10.1016/j.matlet.2004.11.057
[14] K. S. Hui and C. Y. H. Chao, “Synthesis of MCM-41 from Coal Fly Ash by a Green Approach: Influence of Synthesis pH,” Journal of Hazardous Materials, Vol. 137, No. 2, 2006, pp. 1135-1148. doi:10.1016/j.jhazmat.2006.03.050
[15] M. T. N. Villalba, “Synthesis, Characterization and Catalytic Activity of MCM-41 Mesoporous Materials,” Thesis, Valencia Polytechnic University, 1997, p. 265.
[16] S. Brunauer, P. H. Emmett and E. Teller, “Gases in Multimolecular Layers,” Journal of the American Chemical Society, Vol. 60, No. 1, 1938, pp. 309-419. doi:10.1021/ja01269a023
[17] E. P. Barret, L. G. Joyner and P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms,” Journal of the American Chemical Society, Vol. 73, No. 1, 1951, pp. 373-380. doi:10.1021/ja01145a126
[18] H. Yang, Y. Xiao, K. Liu, Y. Yang and Q. Feng, “Physicochemical Dispersion of Chrysotile,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 301, No. 1-3, 2007, pp. 341-345. doi:10.1016/j.colsurfa.2006.12.071
[19] C. Y. Chen, S. Q. Xiao and M. E. Davis, “Studies on Ordered Mesoporous Materials III. Comparison of MCM41 to Mesoporous Materials Derived from Kanemite,” Microporous Materials, Vol. 4, No. 1, 1995, pp. 1-20.
[20] C. Siriluk and S. Yuttapong, “Structure of Mesoporous MCM-41 Prepared from Rice Husk Ash,” The 8th Asian Symposium on Visualization, Chaingmai, 23-27 May 2005, pp. 23-27.
[21] C. Y. Chen, H. X. Li and M. E. Davis, “Studies on Mesoporous Materials: I. Synthesis and Characterization of MCM-41,” Microporous Materials, Vol. 2, No. 1, 1993, pp. 17-26.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.