Evaluation of Transgenic Nicotiana tabacum with dehE Gene Using Transposon Based IRAP Markers


In the present study, five genetically modified herbicide tolerant Nicotiana tabacum cv. TAPM24 plants with a constructed vector pCAMBIA1301a carrying dehalogenase E (dehE) gene were compared with three non-transgenic controls using Tto1 retrotransposon specific IRAP markers. dehE gene was originally characterized in Rhizobium sp. and it produced an enzyme which degraded the Dalapon herbicide. IRAP protocol was applied on transgenic and non-transgenic plants to investigate the retrotransposon based genetic variation which may appear during transformation. Polymorphism rates were calculated as 0%-20% from IRAP-PCR products among all plant samples. These results show that transformation of tobacco plant with the dehE gene may cause Tto1 retrotransposon alterations appearing as different band profiles. The findings are expected to contribute to genetic engineering studies to obtain better results and also to understand how transposons contribute to features such as transgenesis. In our knowledge, this is one of the first experimental data of transgenic N. tabacum engineered with dehE gene originated Rhizobium sp. in terms of retrotranposon based variation.

Share and Cite:

Y. Kaya, S. Yilmaz, N. Gozukirmizi and F. Huyop, "Evaluation of Transgenic Nicotiana tabacum with dehE Gene Using Transposon Based IRAP Markers," American Journal of Plant Sciences, Vol. 4 No. 8A, 2013, pp. 41-44. doi: 10.4236/ajps.2013.48A005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Hirochika, “Activation of Tobacco Retrotransposons during Tissue Culture,” The EMBO Journal, Vol. 12, No. 6, 1993, pp. 2521-2528.
[2] C. Evrensel, S. Yilmaz, A. Temel and N. Gozukirmizi, “Variations in BARE-1 Insertion Patterns in Barley Callus Cultures,” Genetics and Molecular Research, Vol. 10, No. 2, 2011, pp. 980-987. doi:10.4238/vol10-2gmr965
[3] E. Bayram, S. Yilmaz, H. Hamad-Mecbur, G. Kartal and N. Gozukirmizi, “Nikita Retrotransposon Movements in Barley (Hordeum vulgare L.) Callus Culture,” Plant Omics Journal, Vol. 5, No. 3, 2012, pp. 211-215.
[4] S. Takeda, K. Sugimoto, H. Otsuki and H. Hirochika, “Transcriptional Activation of the Tobacco Retrotransposon Tto1 by Wounding and Methyl Jasmonate,” Plant Molecular Biology, Vol. 36, No. 3, 1998, pp. 365-376. doi:10.1023/A:1005911413528
[5] K. Sugimoto, S. Takeda and H. Hirochika, “MYB-Related Transcription Factor Ntmyb2 Induced by Wounding and Elicitors Is a Regulator of the Tobacco Retrotransposon Tto1 and Defense-Related Genes,” Plant Cell, Vol. 12, No. 12, pp. 2511-2527.
[6] Y. Hui-yuan, W. Wei-dong, C. Wan-guang, Q. Guangyong and H. Yu-ping, “Retrotransposon Tto1 in Tobacco Was Activated by the Implantation of LowEnergy N+ Ion Beam,” Life Science Journal, Vol. 7, No. 3, 2010, pp. 141-147.
[7] Y. Kaya, S. Marakli, N. Gozukirmizi, E. Mohamed, M. A. Javed and F. Huyop, “Herbicide Tolerance Genes Derived from Bacteria,” The Journal of Animal and Plant Sciences, Vol. 23, No. 1, 2013, pp. 85-91.
[8] F. Huyop, T. Y. Yusn, M. Ismail, R. A. Wahab, R. A. Cooper, “Overexpression and Characterisation of NonStereospecific Haloacid Dehalogenase E (DehE) of Rhizobium sp.,” Asia Pacific Journal of Molecular Biology and Biotechnology, Vol. 12, No. 1-2, 2004, pp. 15-20.
[9] F. Huyop, N. A. A. Rashid, R. A. Wahab and R. A. Cooper, “Purification and Properties of Rhizobial DehL Expressed in Escherichia coli,” African Journal of Biotechnology, Vol. 7, No. 12, 2008, pp. 1944-1949.
[10] W. D. Burge, “Populations of Dalapon-Decomposing Bacteria in Soil as Influenced by Additions of Dalapon or Other Carbon Source,” Applied and Environmental Microbiology, Vol. 17, No. 4, 1969, pp. 545-550.
[11] S. H. Tseng, Y. J. Lin, P. C. Chang, S. S. Chou and H. M. Chang, “Determination of Residual Dalapon in Sugarcane by Gas Chromatograph Equipped with Electron Capture Detector (GC-ECD),” Journal of Food and Drug Analysis, Vol. 12, 2004, pp. 238-243.
[12] Y. Kaya, S. Yilmaz, S. Marakli, N. Gozukirmizi and F. Huyop, “Transformation of Nicotiana tabacum with DehE Gene,” Journal of Food Agriculture and Environment, Vol. 11, No. 3-4, 2013, in Press.
[13] A. H. Schulman, A. J. Flavell and T. H. N. Ellis, “The Application of LTR Retrotransposons as Molecular Markers in Plants,” Methods in Molecular Biology, Vol. 260, 2004, pp. 145-173.
[14] R. Kalendar, T. Grob, M. Regina, A. Suoniemi and A. H. Schulman, “IRAP and REMAP: Two New Retrotransposon-Based DNA Fingerprinting Techniques,” Theoretical and Applied Genetics, Vol. 98, No. 5, 1999, pp. 704-711. doi:10.1007/s001220051124
[15] R. M. Ismail, “Evaluation of Genetically Modified Sugarcane Lines Carrying Cry1AC Gene Using Molecular Marker Techniques,” GM Crops and Food: Biotechnology in Agriculture and the Food Chain, Vol. 4, No. 1, 2013, pp. 58-66. doi:10.4161/gmcr.24299
[16] B. C. Yang, B.G. Xiao, X. J. Chen and C. H. Shi, “Assessing the Genetic Diversity of Tobacco Germplasm Using Intersimple Sequence Repeat and Inter-Retrotransposon Amplification Polymorphism Markers,” Annals of Applied Biology, Vol. 150, No. 3, 2007, pp. 393-401. doi:10.1111/j.1744-7348.2007.00139.x
[17] P. Jaccard, “Nouvelles Recherches sur la Distribution Florale,” Bulletin de la Societe Vaudoise des Sciences Naturelles, Vol. 44, 1908, pp. 223-270.
[18] B. C. Campbell, S. LeMare, G. Piperidis and I. D. Godwin, “IRAP, a Retrotransposon-Based Marker System for the Detection of Somaclonal Variation in Barley,” Molecular Breeding, Vol. 27, No. 2, 2010, pp. 193-206. doi:10.1007/s11032-010-9422-4
[19] A. J. Muhammad and F. Y. Othman, “Othman Characterization of Fusarium Wilt-Resistant and Fusarium WiltSusceptible Somaclones of Banana Cultivar Rastali (Musa AAB) by Random Amplified Polymorphic DNA and Retrotransposon Markers,” Plant Molecular Biology Reporter, Vol. 23, No. 3, 2005, pp. 241-249. doi:10.1007/BF02772754
[20] P. Smykal, N. Bacova-Kerteszova, R. Kalendar, J. Corander, A. H. Schulman and M. Pavelek, “Genetic Diversity of Cultivated Flax (Linum Usitatissimum L.) Germplasm Assessed by Retrotransposon-Based Markers,” Theoretical and Applied Genetics, Vol. 122, No. 7, 2011, pp. 1385-1397. doi:10.1007/s00122-011-1539-2
[21] S. Pouteau, E. Huttner and M. A. Grandbastien, “Specific Expression of the Tobacco Tnt1 Retrotransposon in Protoplasts,” The EMBO Journal, Vol. 10, No. 7, 1991, pp. 1911-1918.
[22] A. Suoniemi, K. Anamthawat-Jonsson, T. Arna and A. H. Schulman, “Retrotransposon BARE-1 Is a Major, Dispersed Component of the Barley (Hordeum vulgare L.) Genome,” Plant Molecular Biology, Vol. 30, No. 6, 1996, pp. 1321-1329. doi:10.1007/BF00019563
[23] M. L. Grandbastien, “Activation of Plant Retrotransposons under Stress Conditions,” Trends in Plant Science, Vol. 3, No. 5, 1998, pp. 181-187. doi:10.1016/S1360-1385(98)01232-1
[24] H. Hirochika, K. Sugimoto, Y. Otsuki, H. Tsugawa and M. Kanda, “Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, No. 15, 1996, pp. 7783-7788. doi:10.1073/pnas.93.15.7783

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.