The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas


Ocean-colour remote-sensing products have been used to estimate Chl-a trends in European seas with the aim to develop a new indicator based on ocean-colour data for the European Environment Agency (EEA). The new indicator, called CSI023(+), derived from satellite ocean-colour products from the MyOcean Marine Core Service ( has been defined and calculated. In our analysis, we have used 3 MyOcean satellite products: 2 global satellite products (SeaWiFS and a merged product) and one regional (adjusted to specific regional Mediterranean conditions) ocean-colour product. We have evaluated the differences among the 3 different products in estimating Chl-a trends. CSI023(+) complements the EEA CSI023 indicator for eutrophication based on chlorophyll-a (Chl-a) in-situ observations. Analysis has revealed the potential of ocean colour as a CSI023(+) indicator to detect large-scale, and in some cases, even local-scale, changes and decreasing trends of Chl-a were observed throughout the Black Sea, the Eastern Mediterranean, the southern part of the Western Mediterranean, the English Channel and the north part of the North Sea. Large areas with increasing trends were observed in the Bay of Biscay, in the North-East Atlantic regions of Ireland and the UK, in the northern part of the North Sea, in the Kattegat and in the Baltic. Specific analysis has been performed in the Mediterranean coastal areas using regional products to investigate local scale results. Validation of ocean-colour products has been carried out through comparison with observations of the Eionet EEA database. The validation results highlight that regional products produced with regional algorithms are recommended for the future.

Share and Cite:

G. Coppini, V. Lyubarstev, N. Pinardi, S. Colella, R. Santoleri and T. Christiansen, "The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas," International Journal of Geosciences, Vol. 4 No. 6, 2013, pp. 927-949. doi: 10.4236/ijg.2013.46087.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. G. Ferreira, J. H. Andersen, A. Borja, S. B. Bricker, J. Camp, M. C. da Silva, E. Garcés, A.-S. Heiskanen, C. Humborg, L. Ignatiades, C. Lancelot, A. Menesguen, P. Tett, N. Hoepffner and U. Claussen, “Overview of Eutrophication Indicators to Assess Environmental Status within the European Marine Strategy Framework Directive, Estuarine,” Coastal and Shelf Science, Vol. 93, No. 2, 2011, pp. 117-131.
[2] S. B. Bricker, C. G. Clement, D. E. Pirhalla, S. P. Orlando and D. R. G. Farrow, “National Estuarine Eutrophication Assessment. Effects of Nutrient Enrichment in the Nation’s Estuaries,” NOAA, National Ocean Service, Special Projects Office and National Centers for Coastal Ocean Science, Silver Spring, 1999.
[3] S. B. Bricker, J. G. Ferreira and T. Simas, “An Integrated Methodology for Assessment of Estuarine Trophic Status,” Ecological Modelling, Vol. 169, No. 1, 2003, pp. 39-60.
[4] S. B. Bricker, S. V. Smith, J. G. Ferreira, A. M. Nobre, E. Dettmann and J. Latimer, “Assessment of Eutrophication: A Comparison of Methods Applied to Barnegat Bay,” Estuarine Research Federation 2005, Session SYM-06: Managing River Basins and Estuaries: An International Assessment of Approaches and Progress, 2005.
[5] S. B. Bricker, B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks and J. Woerner, “Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change, National Estuarine Eutrophication Assessment Update,” National Centers for Coastal Ocean Science, Silver Spring, 2007.
[6] S. B. Bricker, B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks and J. Woerner, “Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change,” Harmful Algae, Vol. 8, No. 1, 2008, pp. 21-32.
[7] G. Kowalewska, B. Wawrzyniak-Wydrowska and M. Szymczak-Zyla, “Chlorophyll a and Its Derivatives in Sediments of the Odra Estuary as a Measure of Its Eutrophication,” Marine Pollution Bulletin, Vol. 49, No. 3, 2004, pp. 148-153.
[8] U. Claussen, W. Zevenboom, U. Brockmann, D. Topcu and P. Bot, “Assessment of the Eutrophication Status of Transitional, Coastal and Marine Waters within OSPAR,” Hydrobiologia, Vol. 629, No. 1, 2009, pp. 49-58.
[9] M. Garmendia, M. Revilla, J. Bald, J. Franco, A. Laza-Martínez, E. Orive, S. Seoane, V. Valencia and á. Borja, “Phytoplankton Communities and Biomass Size Structure (Fractionated Chlorophyll ‘a’), along Trophic Gradients of the Basque Coast (northern Spain),” Biogeochemistry, Vol. 106, No. 2, 2011, pp. 243-263. doi:10.1007/s10533-010-9445-2
[10] J. Carstensen and P. Henriksen, “Phytoplankton Biomass Response to Nitrogen Inputs: A Method for WFD Boundary Setting Applied to Danish Coastal Waters,” Hydrobiologia, Vol. 633, No. 1, 2009, pp. 137-149.
[11] M. Devlin, M. Best, D. Coates, E. Bresnan, S. O’Boyle, R. Park, J. Silke, C. Cusack and J. Skeats, “Establishing Boundary Classes for the Classification of UK Marine Waters Using Phytoplankton Communities,” Marine Pollution Bulletin, Vol. 55, No. 1-6, 2007, pp. 91-103.
[12] M. Devlin, J. Barry, S. Painting and M. Best, “Extending the Phytoplankton Tool Kit for the UK Water Framework Directive: Indicators of Phytoplankton Community Structure,” Hydrobiologia, Vol. 633, No. 1, 2009, pp. 151-168.
[13] HELCOM, “Eutrophication in the Baltic Sea: An Integrated Thematic Assessment of the Effects of Nutrient Enrichment and Eutrophication in the Baltic Sea Region,” Baltic Sea Environment Proceedings No. 115A, Helsinki Commission, Helsinki, 2009, pp. 1-20.
[14] J. G. Ferreira, S. B. Bricker and T. C. Simas, “Application and Sensitivity Testing of an Eutrophication Assessment Method on Coastal Systems in the United States and European Union,” Journal of Environmental Management, Vol. 82, No. 4, 2007, pp. 433-445.
[15] OSPAR, “Second OSPAR Integrated Report on the Eutrophication Status of the OSPAR Maritime Area,” OSPAR Publication, 2008.
[16] S. Nixon, “Eutrophication and the Macroscope,” Hydrobiologia, Vol. 629, No. 1, 2009, pp. 5-19.
[17] A. Morel and L. Prieur, “Analysis of Variations in Ocean-Colour,” Limnology Oceanography, Vol. 22, No. 4, 1977, pp. 709-722. doi:10.4319/lo.1977.22.4.0709
[18] H. Gordon and A. Morel, “Remote Assessment of Ocean Colour for Interpretation of Satellite Visible Imagery: A Review,” Springer-Verlag, Berlin, 1983.
[19] L. Prieur and S. Sathyendranath, “An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter and Other Particulate Materials,” Limnology Oceanography, Vol. 26, No. 4, 1981. pp. 671-689. doi:10.4319/lo.1981.26.4.0671
[20] D. Antoine, A. Morel, B. Gentili, H. R. Gordon, V. F. Banzon, R. H. Evans, J. W. Brown, S. Walsh, W. Baringer and A. Li, “In Search of Long-Term Trends in Ocean Color,” Eos, Transactions American Geophysical Union, Vol. 84, No. 32, 2003, pp. 301-309. doi:10.1029/2003EO320002
[21] C. Beaulieu, S. A. Henson, J. L. Sarmiento, J. P. Dunne, S. C. Doney, R. R. Rykaczewski and L. Bopp, “Factors Challenging Our Ability to Detect Long-Term Trends in Ocean Chlorophyll,” Biogeosciences, Vol. 10, 2013, pp. 2711-2724. doi:10.5194/bg-10-2711-2013
[22] V. Vantrepotte and F. Melin, “Temporal Variability in SeaWiFS Derived Apparent Optical Properties in European Seas,” Continental Shelf Research, Vol. 30, No. 3-4, 2010, pp. 319-334. doi:10.1016/j.csr.2009.11.012
[23] V. Vantrepotte and F. Melin, “Inter-Annual Variations in the SeaWiFS Global Chlorophyll a Concentration (1997-2007),” Deep Sea Research Part I: Oceanographic Research Papers, Vol. 58, No. 4, 2011, pp. 429-441. doi:10.1016/j.dsr.2011.02.003
[24] S. Maritorena, D. A. Siegel and A. Peterson, “Optimization of a Semi-Analytical Ocean Colour Model for Global Scale Applications,” Applied Optics, Vol. 41, No. 15, 2002, pp. 2705-2714. doi:10.1364/AO.41.002705
[25] S. Maritorena and D. A. Siegela, “Consistent Merging of Satellite Ocean Colour Data Sets Using a Bio-Optical Model,” Remote Sensing of Environment, Vol. 94, No. 4, 2005, pp. 429-440. doi:10.1016/j.rse.2004.08.014
[26] S. Maritorena, O. H. Fanton d’Andonb, A. Mangin and D. A. Siegel, “Merged Satellite Ocean Colour Data Products Using a Bio-Optical Model: Characteristics, Benefits and Issues,” Remote Sensing of Environment, Vol. 114, No. 8, 2010, pp. 1791-1804. doi:10.1016/j.rse.2010.04.002
[27] J. E. O’Reilly and 24 co-authors, “Ocean Colour Chlorophyll-a Algorithms for SeaWiFS, OC2 and OC4: Version 4,” In: S. B. Hooker and E. R. Firestone, Eds., SeaWiFS Post Launch Calibration and Validation Analyses, Vol. 11, NASA Goddard Space Flight Center, Greenbelt, 2000, pp. 9-23.
[28] G. Volpe, R. Santoleri, V. Vellucci, M. Ribera d’Alcalà, S. Marullo and F. D’Ortenzio, “The Colour of the Mediterranean Sea: Global Versus Regional Bio-Optical Algorithms Evaluation and Implication for Satellite Chlorophyll Estimates,” Remote Sensing of Environment, Vol. 107, No. 4, 2007, pp. 625-638. doi:10.1016/j.rse.2006.10.017
[29] G. Volpe, S. Colella, V. Forneris, C. Tronconi and R. Santoleri, “The Mediterranean Ocean Colour Observing System-System Development and Product Validation,” Ocean Science, Vol. 8, No. 5, 2012, pp. 869-883.
[30] J. Sun, R. E. Eplee Jr., X. Xiong, T. Stone, G. Meister and C. R. McClain, “MODIS and SeaWiFS On-Orbit Lunar Calibration,” Proceedings of SPIE, Vol. 7081, Earth Observing Systems XIII, 2008, Article ID: 70810Y. doi:10.1117/12.795338
[31] R. E. Eplee Jr., X. Xiong, J. Sun, G. Meister and C. McClain, “The Cross Calibration of SeaWiFS and MODIS Using On-Orbit Observations of the Moon, Earth Observing Systems XIV,” Proceedings of the Society of Photo-Optical Instrumentation, Vol. 7452, No. 74520X, 2009, p. 74520X-9. doi:10.1117/12.825160
[32] P. K. Sen, “Estimates of the Regression Coefficient Based on Kendall’s Tau,” Journal of the American Statistical Association, Vol. 63, No. 324, 1968, pp. 1379-1389. doi:10.1080/01621459.1968.10480934
[33] T. Salmi, A. Maatta, P. Anttila, T. Ruoho-Airola and T. Amnell, “Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application Makesens,” Ilmanlaadun julkaisuja Publikationer om luftkvalitet Publications on air quality No. 31, Ilmatieteen laitos, Meteorologiska Institutet, Finnish Meteorological Institute, Helsinki, 2002.
[34] R. O. Gilbert, “Statistical Methods for Environmental Pollution Monitoring,” John Wiley and Sons, New York, 1987.
[35] I. Siokou-Frangou, U. Christaki, M. G. Mazzocchi, M. Montresor, M. R. D’Alcalà, D. Vaque and A. Zingone, “Plankton in the Open Mediterranean Sea: A Review,” Biogeosciences, Vol. 7, No. 5, 2010, pp. 1543-1586.
[36] F. D’Ortenzio and M. R. D’Alcalà, “On the Trophic Regimes of the Mediterranean Sea: A Satellite Analysis,” Biogeosciences, Vol. 6, No. 2, 2009, pp. 139-148.
[37] J.-P. Bétoux, B. Gentili and D. Tailliez, “Warming and Freshwater Budget Change in the Mediterranean since the 1940s, Their Possible Relation to the Greenhouse Effect,” Geophysical Research Letters, Vol. 25, No. 7, 1998, pp. 1023-1026. doi:10.1029/98GL00724
[38] J. Lelieveld, H. Berresheim, S. Borrmann, P. J. Crutzen, F. J. Dentener, H. Fischer, et al., “Global Air Pollution Crossroads over the Mediterranean,” Science, Vol. 298, No. 5594, 2002, pp. 794-799. doi:10.1126/science.1075457
[39] S. Marullo, V. Artale and R. Santoleri, “The SST Multidecadal Variability in the Atlantic-Mediterranean Region and Its Relation to AMO,” Journal of Climate, Vol. 24, No. 16, 2011, pp. 4385-4401. doi:10.1175/2011JCLI3884.1
[40] N. Pinardi, M. Zavatarelli, M. Adani, G. Coppini, G. Fratianni, P. Oddo, M. Tonani, V. Lyubartsev, S. Dobricic and A. Bonaduce, “Mediterranean Sea Large Scale Low Frequency Ocean Variability and Water Mass Formation Rates from 1987 to 2007: A Retrospective Analysis,” Progress in Oceanography, 2013. (in Press)
[41] A. I. Ginzburg, A. G. Kostianoy and N. A. Sheremet, “Seasonal and Interannual Variability of the Black Sea Surface Temperature as Revealed from Satellite Data (1982-2000),” Journal of Marine Systems, Vol. 52, No. 1-4, 2004, pp. 33-50.
[42] S. K. Konovalov and J. W. Murray, “Variations in the Chemistry of the Black Sea on a Time Scale of Decades (1960-1995),” Journal of Marine Systems, Vol. 31, No. 1-3, 2001, pp. 217-243.
[43] A. Kideys, “All and Rise of the Black Sea Ecosystem,” Science, Vol. 297, No. 5586, 2002, pp. 1482-1484.
[44] T. Oguz, J. W. Dippner and Z. Kaymaz, “Climatic Regulation of the Black Sea Hydro-Meteorological and Ecological Properties at Interannual-to-Decadal Time Scales,” Journal of Marine Systems, Vol. 60, No. 3-4, 2006, pp. 235-254.
[45] C. Humborg, V. Ittekkot, A. Cociasu and B. Bodungen, “Effect of Danube River Dam on Black Sea Biogeochemistry and Ecosystem Structure,” Nature, Vol. 386, No. 6623, 1997, pp. 385-388.
[46] O. A. Yunev, S. Moncheva and J. Carstensen, “Long-Term Variability of Vertical Chlorophyll a and Nitrate Profiles in the Open Black Sea: Eutrophication and Climate Change,” Marine Ecology Progress Series, Vol. 294, 2005, pp. 95-107.
[47] A. E. Kideys and Z. Romanova, “Distribution of Gelatinous Macrozooplankton in the Southern Black Sea during 1996-1999,” Marine Biology, Vol. 139, No. 3, 2001, pp. 535-547.
[48] A. E. Kideys, A. Roohi, S. Bagheri, G. Finenko and L. Kamburska, “Impacts of Invasive Ctenophores on the Sheries of the Black Sea and Caspian Sea,” Oceanography, Vol. 18, No. 2, 2005, pp. 76-85.
[49] I. Kagalou, I. Leonardos, C. Anastasiadou and C. Neofytou, “The DPSIR Approach for an Integrated River Management Framework. A Preliminary Application on a Mediterranean Site (Kalamas River-NW Greece),” Water Resource Management, Vol. 26, No. 6, pp. 1677-1692. doi:10.1007/s11269-012-9980-9
[50] C. Ibánez, N. Prat, C. Duran, M. Pardos, A. Munné, A. Ginebreda, L. Tirapu, R. Andreu, N. Caiola, N. Cid, H. Hampel, R. Sanchez and R. Trobajo, “Changes in Dissolved Nutrients in the Lower Ebro River: Causes and Consequences,” Limnetica, Vol. 27, No. 1, 2008, pp. 53-64.
[51] P. Mozetic, C. Solidoro, G. Cossarini, G. Socal, R. Precali, J. France, F. Bianchi, C. de Vittor, N. Smodlaka and S. F. Umani, “Recent Trends towards Oligotrophication of the Northern Adriatic: Evidence from Chlorophyll a Time Series,” Estuaries and Coasts, Vol. 33, No. 2, 2010, pp. 362-375. doi:10.1007/s12237-009-9191-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.