Injectable in situ crosslinkable hyaluronan-polyvinyl phosphonic acid hydrogels for bone engineering


A novel injectable hydrogel that was synthesized by in situ crosslinking of hyaluronan and polyvinyl phosphonic acid was proposed in this study. Fourier transform infrared spectrum (FT-IR) analysis, scanning electron microscope (SEM), pH measurement, and biodegradation test were used to confirm its characteristics. The results permitted to prove successful crosslinking, observe the inner morphology of hydrogel and pore sizes distribution, and determine the decomposition of hydrogel components during incubation time. Result of pH measurement showed that the pH scale of hydrogel decreased when volume of PVPA increased. As a consequence, it affected the cytotoxicity value, cell proliferation, and cell growth behaviors of each hydrogel. Optical microscope observation showed that chondroblasts cell proliferated well on HA-PVPA hydrogel. Therefore, these results suggest that the new injectable hydrogel is appropriate for bone/cartilage regeneration applications.

Share and Cite:

Thi-Hiep, N. , Hoa, D. and Toi, V. (2013) Injectable in situ crosslinkable hyaluronan-polyvinyl phosphonic acid hydrogels for bone engineering. Journal of Biomedical Science and Engineering, 6, 854-862. doi: 10.4236/jbise.2013.68104.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Nguyen, M.K. and Lee, D.S. (2010) Injectable biodegradable hydrogels. Macromolecular Bioscience, 10, 563-579. doi:10.1002/mabi.200900402
[2] Chu, C. (2003) Biodegradable hydrogels as drug controlled release vehicles, in tissue engineering and novel delivery systems. CRC Press, Boca Raton. doi:10.1201/9780203913338.ch19
[3] Kim, D.Y., et al. (2012) Injectable in situ—Forming hydrogels for a suppression of drug burst from drug-loaded microcapsules. Soft Matter, 8, 7638-7648. doi:10.1039/c2sm25566a
[4] Zheng, S.X., et al. (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 25, 1339-1348. doi:10.1016/j.biomaterials.2003.08.014
[5] Yeo, Y., et al. (2007) In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Annals of Surgery, 245, 819-824. doi:10.1097/01.sla.0000251519.49405.55
[6] Zhang, W., et al. (2011) The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials, 32, 9415-9424. doi:10.1016/j.biomaterials.2011.08.047
[7] Moura, M.J., et al. (2011) In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Biomacromolecules, 12, 3275-3284. doi:10.1021/bm200731x
[8] Nicodemus, G.D. and Bryant, S.J. (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B: Reviews, 14, 149-165. doi:10.1089/ten.teb.2007.0332
[9] Zhao, L., Weir, M.D. and Xu, H.H. (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mes-enchymal stem cell paste for bone tissue engineering. Biomaterials, 31, 6502-6510. doi:10.1016/j.biomaterials.2010.05.017
[10] Arvidson, K., et al. (2011) Bone regeneration and stem cells. Journal of Cellular and Molecular Medicine, 15, 718-746. doi:10.1111/j.1582-4934.2010.01224.x
[11] Toh, W.S., et al. (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31, 6968-6980. doi:10.1016/j.biomaterials.2010.05.064
[12] Kutty, J.K. and Webb, K. (2009) Mechanomimetic hydrogels for vocal fold lamina propria regeneration. Journal of Biomaterials Science, Polymer Edition, 20, 737-756. doi:10.1163/156856209X426763
[13] Martinez-Sanz, E., et al. (2011) Bone reservoir: Injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. Journal of Controlled Release, 152, 232-240. doi:10.1016/j.jconrel.2011.02.003
[14] Bulman, S.E., Barron, V., Coleman, C.M. and Barry, F. (2013) Enhancing the mesenchymal stem cell therapeutic response: Cell localization and support for cartilage repair. Tissue Engineering Part B: Reviews, 19, 58-68. doi:10.1089/ten.teb.2012.0101
[15] Sinthuvanich, C., Nagy, K.J. and Schneider, J.P. (2012) Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior. Biomaterials, 33, 7478-7488. doi:10.1016/j.biomaterials.2012.06.097
[16] Amini, A.A. and Nair, L.S. (2012) Injectable hydrogels for bone and cartilage repair. Biomedical Materials, 7, 024105. doi:10.1088/1748-6041/7/2/024105
[17] Burdick, J.A. and Prestwich, G.D. (2011) Hyaluronic acid hydrogels for biomedical applications. Advanced Materials, 23, H41-H56. doi:10.1002/adma.201003963
[18] Huang, T.L., et al. (2011) Intra-articular injections of sodium hyaluronate (Hyalgan (R)) in osteoarthritis of the knee. A randomized, controlled, double-blind, multicenter trial in the Asian population. BMC Musculoskeletal Disorders, 12, 221. doi:10.1186/1471-2474-12-221
[19] Aggarwal, A. and Sempowski, I.P. (2004) Hyaluronic acid injections for knee osteoarthritis. Systematic review of the literature. Canadian Family Physician, 50, 249-256.
[20] Russell, R.G.G. and Rogers, M.J. (1999) Bisphospho-nates: From the laboratory to the clinic and back again. Bone, 25, 97-106. doi:10.1016/S8756-3282(99)00116-7
[21] Greish, Y.E. and Brown, P.W. (2001) Preparation and characterization of calcium phosphate-poly(vinyl phosphonic acid) composites. Journal of Materials Science: Materials in Medicine, 12, 407-411. doi:10.1023/A:1011292819246
[22] Macarie, L. and Ilia, G. (2010) Poly(vinylphosphonic acid) and its derivatives. Progress in Polymer Science, 35, 1078-1092. doi:10.1016/j.progpolymsci.2010.04.001
[23] Franco, R.A., et al. (2012) On stabilization of PVPA/ PVA electrospun nanofiber membrane and its effect on material properties and biocompatibility. Journal of Nanomaterials. doi:10.1155/2012/393042
[24] Greish, Y.E. and Brown, P.W. (2001) Chemically formed HAp-Ca poly(vinyl phosphonate) composites. Biomaterials, 22, 807-816. doi:10.1016/S0142-9612(00)00243-X
[25] Shah, D.N., Recktenwall-Work, S.M. and Anseth, K.S. (2008) The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials, 29, 2060-2072. doi:10.1016/j.biomaterials.2008.01.001
[26] Hiep, N. and Lee, B.-T. (2010) Electro-spinning of PLGA/ PCL blends for tissue engineering and their biocompatibility. Journal of Materials Science: Materials in Medicine, 21, 1969-1978. doi:10.1007/s10856-010-4048-y
[27] Association for the Advancement of Medical Instrumentation (2009) Tests for cytotoxicity: In vitro methods. In: Biological Evaluation of Medical Devices. Association for the Advancement of Medical Instrumentation, Arlington.
[28] Haxaire, K., et al. (2003) Hydration of polysaccharide hyaluronan observed by IR spectrometry. I. Preliminary experiments and band assignments. Biopolymers, 72, 10-20. doi:10.1002/bip.10245
[29] Zhao, J. and Tamm, L.K. (2002) FTIR and fluorescence studies of interactions of synaptic fusion proteins in polymer-supported bilayers. Langmuir, 19, 1838-1846. doi:10.1021/la026228c
[30] Yamada, M. and Honma, I. (2005) Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer, 46, 2986-2992. doi:10.1016/j.polymer.2005.02.056
[31] Nguyen, T.-H. and Lee, B.-T. (2012) In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. Journal of Biomedical Materials Research Part A, 101, 797-808.
[32] Yun, H.-S., et al. (2008) Hierarchically mesoporous-macroporous bioactive glasses scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B, 374-380. doi:10.1002/jbm.b.31114
[33] Franco, R., Nguyen, T. and Lee, B.-T. (2011) Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Journal of Materials Science: Materials in Medicine, 22, 2207-2218. doi:10.1007/s10856-011-4402-8
[34] Nguyen, T.-H. and Lee, B.-T. (2012) The effect of crosslinking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone-gelatin/ PLGA-gelatin/PLGA-chitosan hybrid composite. Science and Technology of Advanced Materials, 13, 035002. doi:10.1088/1468-6996/13/3/035002
[35] Morgan, D.L. (1998) Tetrazolium (MTT) assay for cellular viability and activity, in polyamine protocols. Morgan, D.L., Ed., Humana Press, Totowa, 179-184.
[36] Shu, X.Z., et al. (2003) Disulfide-crosslinked hyaluronangelatin hydrogel films: A covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials, 24, 3825-3834. doi:10.1016/S0142-9612(03)00267-9
[37] Nikolaev, N.I., et al. (2012) The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation. Journal of the Royal Society Interface, 9, 2503-2515. doi:10.1098/rsif.2012.0271
[38] Guo, X., et al. (2010) Effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomaterialia, 6, 2920-2931. doi:10.1016/j.actbio.2010.02.046
[39] Yan, J., et al. (2010) Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. Journal of Biomaterials Applications, 24, 625-637. doi:10.1177/0885328208100536
[40] Woodbury, D., et al. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61, 364-370. doi:10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
[41] Gu, S., et al. (2009) Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Molecular Vision, 15, 99-107.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.