Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation


This paper investigates the sensitivity of multi-temporal SAR data acquired at different frequencies (X-, C-and L-bands), polarizations (HH, VV, VH and HV) and incidence angles (from 24° to 53°) during the growing season of two winter crops (rapeseed and wheat). This study was part of a multi-sensor crop-monitoring experiment that was performed from February to November 2010 (MCM10). During the experiment, dense series of satellite data were acquired in microwave, optical and thermal domains (more than 150 images were provided by TerraSAR-X, Radarsat-2 Alos, Formosat-2, Spot-4/5 and Landsat-5/7) were synchronous with ground measurements over an agricultural area located in southwestern France, near Toulouse. An angular normalization of radar signals is first performed for each crop type at X-and C-bands by using a dense temporal satellite series and the complementarity provided by microwave and optical data. The results show that the angular sensitivity of radar backscatter decreases with the increase of the vegetation index (from 0.4 dB.°ˉ1 over bare soils to 0.05 dB.°ˉ1 for fully vegetated fields). Lower angular sensitivity is observed at X-band (compared to C-band), and for the cross-polarized signal. Analyses of the temporal signatures of the radar backscatter show a well-marked signal dynamic at X-, C-and L-bands, depending on the crops and theirs associated phenological stages. During the stems elongation of wheat while the NDVI increases of 0.2, a dynamic of 10 dB is observed at X-band and at C-band with VV polarization. Interesting behaviors are also observed during the crop senescence with an increase of several dB (depending on the sensor configuration), while the NDVI decreases of 0.5. Over rapeseed, cross-polarized backscatters offer promising dynamic of 6 dB during the seed development, while the NDVI saturates at maximum values. The use of radar signals, in complement of optical, for crop parameters monitoring is achieved in terms of leaf area index and crop height estimations. Over rapeseed, best correlations between crop parameters and radar signals are obtained at C-band, by combining co-and cross-polarized backscatters (R2 > 0.61). Over wheat, best results are achieved by using X-band data (R2 > 0.64).

Share and Cite:

R. Fieuzal, F. Baup and C. Marais-Sicre, "Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation," Advances in Remote Sensing, Vol. 2 No. 2, 2013, pp. 162-180. doi: 10.4236/ars.2013.22020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. D. Jones, D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon and C. P. Morice, “Hemispheric and Large-Scale Land-Surface Air Temperature Variations: An Extensive Revision and an Update to 2010,” Journal of Geophysical Research, Vol. 117, No. D5, 2012, Article ID: D05127.
[2] M. H. I. Dore, “Climate Change and Changes in Global Precipitation Patterns: What Do We Know?” Environment International, Vol. 31, No. 8, 2005, pp. 1167-1181. doi:10.1016/j.envint.2005.03.004
[3] J. E. Olesen and M. Bindi, “Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy,” European Journal of Agronomy, Vol. 16, No. 4, 2002, pp. 239-262. doi:10.1016/S1161-0301(02)00004-7
[4] P. Falloon and R. Betts, “Climate Impacts on European Agriculture and Water Management in the Context of Adaptation and Mitigation—The Importance of an Integrated Approach,” Science of The Total Environment, Vol. 408, No. 23, 2010, pp. 5667-5687. doi:10.1016/j.scitotenv.2009.05.002
[5] J. E. Olesen, M. Trnka, K. C. Kersebaum, A. O. Skjelvag, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra and F. Micale, “Impacts and Adaptation of European Crop Production Systems to Climate Change,” European Journal of Agronomy, Vol. 34, No. 2, 2011, pp. 96-112. doi:10.1016/j.eja.2010.11.003
[6] E. M. Hansen and J. Djurhuus, “Nitrate Leaching as Influenced by Soil Tillage and Catch Crop,” Soil and Tillage Research, Vol. 41, No. 3-4, 1997, pp. 203-219. doi:10.1016/S0167-1987(96)01097-5
[7] P. Béziat, E. Ceschia and G. Dedieu, “Carbon Balance of a Three Crop Succession over Two Cropland Sites in South West France,” Agricultural and Forest Meteorology, Vol. 149, No. 10, 2009, pp. 1628-1645. doi:10.1016/j.agrformet.2009.05.004
[8] E. Ceschia, P. Béziat, J. F. Dejoux, M. Aubinet, C. Bernhofer, B. Bodson, N. Buchmann, A. Carrara, P. Cellier, P. Di Tommasi, J. A. Elbers, W. Eugster, T. Grünwald, C. M. J. Jacobs, W. W. P. Jans, M. Jones, W. Kutsch, G. Lanigan, E. Magliulo, O. Marloie, E. J. Moors, C. Moureaux, A. Olioso, B. Osborne, M. J. Sanz, M. Saunders, P. Smith, H. Soegaard and M. Wattenbach, “Management Effects on Net Ecosystem Carbon and GHG Budgets at European Crop Sites,” Agriculture, Ecosystems and Environment, Vol. 139, No. 3, 2010, pp. 363-383. doi:10.1016/j.agee.2010.09.020
[9] P. R. Ward, K. C. Flower, N. Cordingley, C. Weeks and S. F. Micin, “Soil Water Balance with Cover Crops and Conservation Agriculture in a Mediterranean Climate,” Field Crops Research, Vol. 132, 2012, pp. 33-39. doi:10.1016/j.fcr.2011.10.017
[10] W. G. M. Bastiaanssen, D. J. Molden and I. W. Makin, “Remote Sensing for Irrigated Agriculture: Examples from Research and Possible Applications,” Agricultural Water Management, Vol. 46, No. 2, 2000, pp. 137-155. doi:10.1016/S0378-3774(00)00080-9
[11] S. Kalluri, P. Gilruth and R. Bergman, “The Potential of Remote Sensing Data for Decision Makers at the State, Local and Tribal Level: Experiences from NASA’s Synergy Program,” Environmental Science & Policy, Vol. 6, No. 6, 2003, pp. 487-500. doi:10.1016/j.envsci.2003.08.002
[12] S. K. Seelan, S. Laguette, G. M. Casady and G. A. Seielstad, “Remote Sensing Applications for Precision Agriculture: A Learning Community Approach,” Remote Sensing of Environment, Vol. 88, No. 1-2, 2003, pp. 157-169. doi:10.1016/j.rse.2003.04.007
[13] F. T. Ulaby, R. K. Moore and A. K. Fung, “Microwave Remote Sensing: Active and Passive, Volume I, Microwave Remote Sensing Fundamentals and Radiometry,” Addison-Wesley, Reading, 1981.
[14] F. T. Ulaby, R. K. Moore and A. K. Fung, “Microwave Remote Sensing: Active and Passive, Volume III, From Theory to Application,” Artech House, Dedham, 1986.
[15] F. T. Ulaby, P. P. Batlivala and M. C. Dobson, “Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil,” IEEE Transactions on Geoscience Electronics, Vol. 16, No. 4, 1978, pp. 286-295. doi:10.1109/TGE.1978.294586
[16] F. T. Ulaby, G. A. Bradley and M. C. Dobson, “Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II-Vegetation-Covered Soil,” IEEE Transactions on Geoscience Electronics, Vol. 17, No. 2, 1979, pp. 33-40. doi:10.1109/TGE.1979.294626
[17] M. C. Dobson and F. Ulaby, “Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, And Soil Texture: Part III-Soil Tension,” IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-19, No. 1, 1981, pp. 51-61. doi:10.1109/TGRS.1981.350328
[18] S. Le Hegarat-Mascle, M. Zribi, F. Alem, A. Weisse and C. Loumagne, “Soil Moisture Estimation from ERS/SAR Data: Toward an Operational Methodology,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 12, 2002, pp. 2647-2658. doi:10.1109/TGRS.2002.806994
[19] M. Zribi, N. Baghdadi, N. Holah and O. Fafin, “New Methodology for Soil Surface Moisture Estimation and Its Application to ENVISAT-ASAR Multi-Incidence Data Inversion,” Remote Sensing of Environment, Vol. 96, No. 3-4, 2005, pp. 485-496. doi:10.1016/j.rse.2005.04.005
[20] H. McNairn, A. Merzouki, A. Pacheco and J. Fitzmaurice, “Monitoring Soil Moisture to Support Risk Reduction for the Agriculture Sector Using RADARSAT-2,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 3, 2012, pp. 824-834. doi:10.1109/JSTARS.2012.2192416
[21] S. C. M. Brown, S. Quegan, K. Morrison, J. C. Bennett, et al., “High-Resolution Measurements of Scattering in Wheat Canopies: Implications for Crop Parameter Retrieval,” ETATS-UNIS: Institute of Electrical and Electronics Engineers, New York, 2003.
[22] A. Balenzano, F. Mattia, G. Satalino and M. W. J. Davidson, “Dense Temporal Series of Cand L-Band SAR Data for Soil Moisture Retrieval Over Agricultural Crops,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 4, No. 2, 2011, pp. 439-450. doi:10.1109/JSTARS.2010.2052916
[23] P. Saich and M. Borgeaud, “Interpreting ERS SAR Signatures of Agricultural Crops in Flevoland, 1993-1996,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 2000, pp. 651-657. doi:10.1109/36.841995
[24] F. Mattia, T. Le Toan, G. Picard, F. I. Posa, A. D’Alessio, C. Notarnicola, A. M. Gatti, M. Rinaldi, G. Satalino and G. Pasquariello, “Multitemporal C-Band Radar Measurements on Wheat Fields,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 7, 2003, pp. 1551-1560. doi:10.1109/TGRS.2003.813531
[25] B. A. M. Bouman and H. W. J. van Kasteren, “GroundBased X-Band (3-cm Wave) Radar Backscattering of Agricultural Crops. II. Wheat, Barley, and Oats; The Impact of Canopy Structure,” Remote Sensing of Environment, Vol. 34, No. 2, 1990, pp. 107-119. doi:10.1016/0034-4257(90)90102-R
[26] L. Dente, G. Satalino, F. Mattia and M. Rinaldi, “Assimilation of Leaf Area Index Derived from ASAR and MERIS Data into CERES-Wheat Model to Map Wheat Yield,” Remote Sensing of Environment, Vol. 112, No. 4, 2008, pp. 1395-1407. doi:10.1016/j.rse.2007.05.023
[27] S. Mangiarotti, P. Mazzega, L. Jarlan, E. Mougin, F. Baup and J. Demarty, “Evolutionary Bi-Objective Optimization of a Semi-Arid Vegetation Dynamics Model with NDVI and Backscattering Coefficient Satellite data,” Remote Sensing of Environment, Vol. 112, No. 4, 2008, pp. 1365-1380. doi:10.1016/j.rse.2007.03.030
[28] R. Hadria, B. Duchemin, F. Baup, T. Le Toan, A. Bouvet, G. Dedieu and M. Le Page, “Combined Use of Optical and Radar Satellite Data for the Detection of Tillage and Irrigation Operations: Case Study in Central Morocco,” Agricultural Water Management, Vol. 96, No. 7, 2009, pp. 1120-1127. doi:10.1016/j.agwat.2009.02.010
[29] R. Hadria, B. Duchemin, L. Jarlan, G. Dedieu, F. Baup, S. Khabba, A. Olioso and T. Le Toan, “Potentiality of Optical and Radar Satellite Data at High Spatio-Temporal Resolutions for the Monitoring of Irrigated Wheat Crops in Morocco,” International Journal of Applied Earth Observation and Geoinformation, Vol. 12, Suppl. 1, 2010, pp. S32-S37. doi:10.1016/j.jag.2009.09.003
[30] R. Fieuzal, B. Duchemin, L. Jarlan, M. Zribi, F. Baup, O. Merlin, O. Hagolle and J. Garatuza-Payan, “Combined Use of Optical and Radar Satellite Data for the Monitoring of Irrigation and Soil Moisture of Wheat Crops,” Hydrology and Earth System Sciences, Vol. 15, Special Issue, 2011, pp. 1117-1129. doi:10.5194/hess-15-1117-2011
[31] M. S. Moran, L. Alonso, J. F. Moreno, M. P. C. Mateo, D. F. de la Cruz and A. Montoro, “A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 4, 2012, pp. 1057-1070. doi:10.1109/TGRS.2011.2166080
[32] M. S. Moran, A. Vidal, D. Troufleau, Y. Inoue and T. A. Mitchell, “Kuand C-Band SAR for Discriminating Agricultural Crop and Soil Conditions,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 1, 1998, pp. 265-272. doi:10.1109/36.655335
[33] K. Dabrowska-Zielinska, Y. Inoue, W. Kowalik and M. Gruszczynska, “Inferring the Effect of Plant and Soil Variables on Cand L-Band SAR Backscatter over Agricultural Fields, Based on Model Analysis,” Advances in Space Research, Vol. 39, No. 1, 2007, pp. 139-148. doi:10.1016/j.asr.2006.02.032
[34] N. Baghdadi, N. Boyer, P. Todoroff, M. El Hajj and A. Bégué, “Potential of SAR Sensors TerraSAR-X, ASAR/ ENVISAT and PALSAR/ALOS for Monitoring Sugarcane Crops on Reunion Island,” Remote Sensing of Environment, Vol. 113, No. 8, 2009, pp. 1724-1738. doi:10.1016/j.rse.2009.04.005
[35] X. Jiao, H. McNairn, J. Shang and J. Liu, “The Sensitivity of Multi-Frequency (X, C and L-Band) Radar Backscatter Signatures to Bio-Physical Variables (LAI) over Corn and Soybean Fields,” ISPRS TC VII Symposium—100 Years ISPRS, Vienna, 5-7 July 2010, pp. 317-325.
[36] F. Baup, R. Fieuzal, C. Marais-Sicre, J. F. Dejoux, V. le Dantec, P. Mordelet, M. Claverie, O. Hagolle, A. Lopes, P. Keravec, E. Ceschia, A. Mialon and R. Kidd, “MCM’10: An Experiment for Satellite Multi-Sensors Crop Monitoring from High to Low Resolution Observations,” 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 22-27 July 2012, pp. 4849-4852.
[37] U. Meier, “Stades Phénologiques des Mono-et Dicotylédones Cultivées,” Centre Fédéral de Recherches Biologiques pour l`Agriculture et les Forêts, 2001. ref/doc/BBCH.pdf
[38] J.-S. Chern, J. Ling and S.-L. Weng, “Taiwan’s Second Remote Sensing Satellite,” Acta Astronautica, Vol. 63, No. 11-12, 2008, pp. 1305-1311. doi:10.1016/j.actaastro.2008.05.022
[39] M. Arnaud and M. Leroy, “SPOT 4: A New Generation of SPOT Satellites,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 46, No. 4, 1991, pp. 205-215. doi:10.1016/0924-2716(91)90054-Y
[40] O. Hagolle, G. Dedieu, B. Mougenot, V. Debaecker, B. Duchemin and A. Meygret, “Correction of Aerosol Effects on Multi-Temporal Images Acquired with Constant Viewing Angles: Application to Formosat-2 Images,” Remote Sensing of Environment, Vol. 112, No. 4, 2008, pp. 1689-1701. doi:10.1016/j.rse.2007.08.016
[41] J. W. Rouse, R. H. Haas, J. A. Schell, D. W. Deering and J. C. Harlan, “Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation,” 1974.
[42] D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada and I. B. Strachan, “Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture,” Remote Sensing of Environment, Vol. 90, No. 3, 2004, pp. 337-352. doi:10.1016/j.rse.2003.12.013
[43] J. Liu, E. Pattey, J. Shang, S. Admiral, G. Jégo, H. McNairn, A. Smith, B. Hu, F. Zhang and J. Freemantle, “Quantifying Crop Biomass Accumulation Using MultiTemporal Optical Remote Sensing Observations,” 30th Canadian Symposium on Remote Sensing, Lethbridge, 22-25 June 2009, 10p.
[44] H. Breit, T. Fritz, U. Balss, M. Lachaise, A. Niedermeier and M. Vonavka, “TerraSAR-X SAR Processing and Products,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, 2010, pp. 727-740. doi:10.1109/TGRS.2009.2035497
[45] L. C. Morena, K. V. James and J. Beck, “An Introduction to the RADARSAT-2 Mission,” Canadian Journal of Remote Sensing, Vol. 30, No. 3, 2004, pp. 221-234. doi:10.5589/m04-004
[46] A. Rosenqvist, M. Shimada, N. Ito and M. Watanabe, “ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 1, 2007, pp. 3307-3316. doi:10.1109/TGRS.2007.901027
[47] T. Fritz, M. Eineder, J. Mittermayer, A. Roth, E. B?rner and H. Breit, “TerraSAR-X Ground Segment Basic Product Specification Document,” DLR, London, 2008, p. 103.
[48] NEST, “Next ESA SAR Toolbox,” 2009.
[49] M. Lavalle and T. Wright, “Absolute Radiometric and Polarimetric Calibration of ALOS PALSAR Products,” 2009, p. 18. pcs/alos/palsar/articles/ Calibration_palsar_produ cts_v13.pdf
[50] H. Skriver, M. T. Svendsen and A. G. Thomsen, “Multitemporal Cand L-Band Polarimetric Signatures of Crops,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 1999, pp. 2413-2429. doi:10.1109/36.789639
[51] G. Cookmartin, P. Saich, S. Quegan, R. Cordey, P. Burgess-Allen and A. Sowter, “Modeling Microwave Interactions with Crops and Comparison with ERS-2 SAR Observations,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 2, 2000, pp. 658-670.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.