Genealogy of Cucumber mosaic virus Isolated from Ornamental Species


Cucumber mosaic virus (CMV) has the broadest host range, infecting more than 1300 species in more than 500 genera from over 100 botanical families. In ornamental plants, CMV can cause mosaic and distortion of leaves, stunting, color break, and malformation of flowers. CMV coat protein (CP) sequences obtained from seven ornamental plants and other homologous sequences available in GenBank were compared, and phylogenetic relationships were established. Total RNA from virus-infected ornamental species were extracted, submitted to RT-PCR with specific primers, and amplicons obtained were sequenced. A nucleotide substitution model and phylogenetic analyses were carried out using the PAUP program. The seven sequences of CMV CP obtained showed similar identity percentages and close relationships with subgroup I isolates from other countries and hosts. CMV isolates from different regions of S?o Paulo state, Brazil (Salvia splendens, Catharanthus roseus, Nematanthus nervosus (=Hypocyrta nervosa), Impatiens walleriana, Eucharis grandiflora and Commelina sp.) formed a monophyletic group, indicating a possible common origin. It was found that when lily sequences of CMV only from different geographic regions were compared, Brazilian isolates shared the same common ancestor with those from Poland and Taiwan. Furthermore, this monophyletic group presented a quite basal position.

Share and Cite:

L. Duarte, E. Rivas, R. Harakava, M. Veauvy and M. Alexandre, "Genealogy of Cucumber mosaic virus Isolated from Ornamental Species," American Journal of Plant Sciences, Vol. 4 No. 5, 2013, pp. 1081-1087. doi: 10.4236/ajps.2013.45134.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. M. Q. King, M. J. Adams, E. B. Carstens and E. J. Lefkowitz, “Virus Taxonomy,” Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier/ Academic Press, San Diego, 2011.
[2] M. J. Roossinck, “Evolutionary History of Cucumber mosaic virus Deduced by Phylogenetic Analyses,” Journal of Virology, Vol. 76, No. 7, 2002, pp. 3382-3387. doi:10.1128/JVI.76.7.3382-3387.2002
[3] F. García-Arenal and P. Palukaitis, “Cucumber mosaic virus,” In: B. W. J. Mahy and M. H. V. van Regenmortel, Eds., Encyclopedia of Virology, Academic Press, Oxford, 2008, pp. 614-619. doi:10.1016/B978-012374410-4.00640-3
[4] I. Pagán, A. Fraile, E. Fernandez-Fueyo, N. Montes, C. Alonso-Blanco and F. García-Arenal, “Arabidopsis thaliana as a Model for the Study of Plant-Irus Covolution,” Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, Vol. 365, No. 1548, 2010, pp. 1983-1995. doi:10.1098/rstb.2010.0062
[5] S. Flasinski, S. W. Scott, O. W. Barnett and S. Sun, “Diseases of Peperomia, Impatiens, and Hibbertia Caused by Cucumber mosaic virus,” Plant Disease, Vol. 79, 1995, pp. 843-848. doi:10.1094/PD-79-0843
[6] P. Palukaitis, M. J. Roossinck, R. G. Dietzgen and R. I. B. “Francki, Cucumber mosaic virus,” Advances in Virus Research, Vol. 41, 1992, pp. 281-348. doi:10.1016/S0065-3527(08)60039-1
[7] A. Samad, P. V. Ajayakumar, M. K. Gupta, A. K. Shukla, M. P. Darokar, B. Somkuwar and M. Alam, “Natural Infection of Periwinkle (Catharanthus roseus) with Cucumber mosaic virus, subgroup IB,” Australasian Plant Disease Notes, Vol. 3, 2008, pp. 30-34. doi:10.1071/DN08013
[8] R. A. Valverde, S. Sabanadzovic and J. Hammond, “Viruses That Enhance the Aesthetics of Some Ornamental Plants: Beauty or Beast?” Plant Disease, Vol. 96, No. 5, 2012, pp. 600-611. doi:10.1094/PDIS-11-11-0928-FE
[9] M. J. Roossinck, L. Zhang and K. Hellwald, “Rearranments in the 5’ Nontranslated Region and Phylogenetic Analyses of Cucumber Mosaic Virus RNA 3 Indicate Radial Evolution of Three Subgroups,” Journal of Virology, Vol. 73, No. 8, 1999, pp. 6752-758.
[10] M. Eiras, A. J. Boari, A. Colariccio, A. L. R. Chaves, M. R. S. Briones, A. R. Figueira and R. Harakava, “Characterization of Isolates of the Cucumovirus Cucumber mosaic virus Present in Brazil,” Journal of Plant Pathology, Vol. 86, No. 1, 2004, pp. 59-67.
[11] S. Davino, S. Panno, E. A. Rangel, M. Davino, M. G. Bellardi and L. Rubio, “Population Genetics of Cucumber Mosaic Virus Infecting Medicinal, Aromatic and Ornamental Plants from Northern Italy,” Archives of Virology, Vol. 157, No. 4, 2012, pp. 739-745. doi:10.1007/s00705-011-1216-4
[12] P. Chomczynski and N. Sacchi, “Single Step Method of RNA Isolation by Acid Guanidium Thiocianate-HenolChloroform Extraction,” Analytical Biochemistry, Vol. 162, No. 1, 1987, pp. 156-159. doi:10.1016/0003-2697(87)90021-2
[13] S. Wylie, C. R. Wilson, R. A. C. Jones and M. G. K. Jones, “A Polymerase Chain Reaction Assay for Cucumber Mosaic Virus in Lupin Seeds,” Australian Journal of Agricultural Research, Vol. 44, No. 1, 1993, pp. 41-51. doi:10.1071/AR9930041
[14] D. L. Swofford, “PAUP*: Phylogenetic Analysis Using Parsimony (* and Related Methods), Version 4.0,” Sinauer Associates, Sunderland, 2002.
[15] J. Felsenstein, “Evolutionary Trees from DNA Sequences: A Maximum Likehood Approach,” Journal of Molecular Evolution, Vol. 17, No. 6, 1981, pp. 368-376. doi:10.1007/BF01734359
[16] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin and G. Higgins, “The Clustal X Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Tools,” Nucleic Acids Research, Vol. 25, No. 24, 1997, pp. 4876-4882.
[17] J. Felsenstein, “The Number of Evolutionary Trees,” Systematc Zoology, Vol. 27, No. 4, 1978, pp. 401-410. doi:10.2307/2412923
[18] W. P. Maddison and D. R. Maddison, “MacClade, v. 3.03,”Sinauer Associates, Inc. Publishers, Sunderland, 1992.
[19] D. Posada and K. A. Crandall, “A Model Test: Testing the Model of DNA Substitution,” Bioinformatics, Vol. 14, No. 9, 1998, pp. 817-818. doi:10.1093/bioinformatics/14.9.817
[20] C. Masuta, Y. Seshimo, M. Mukohara, H. J. Jung, S. Uedas, K. H. Ryu and J. K. Choi, “Evolutionary Characterization of Two Isolates of Cucumber mosaic virus Isolated from Japan and Korea,” Journal of General Plant Pathology, Vol. 68, No. 2, 2002, pp. 163-168. doi:10.1007/PL00013070
[21] V. K. Dubey, Aminuddin, and V. P. Singh, “Molecular Characterization of Cucumber mosaic virus Infecting Gladiolus, Revealing Its Phylogeny Distinct from the Indian Isolate and Alike the Fny Strain of CMV,” Virus Gene, Vol. 41, No. 1, 2010, pp. 126-134. doi:10.1007/s11262-010-0483-6
[22] V. Koundal, Q. M. R. Hao and S. Praveen, “Characteri- zation, Genetic Diversity, and Evolutionary Link of Cucumber mosaic virus Strain New Delhi from India,” Biochemical Genetics, Vol. 49, No. 1-2, 2011, pp. 25-38. doi:10.1007/s10528-010-9382-8
[23] Y. K. Chen, A. F. L. M. Derks, S. Langeveld, R. Goldbach and M. Prins, “High Sequence Conservation among Cucumber Mosaic Virus Isolates from Lily,” Archives of Virology, Vol. 146, No. 8, 2001, pp. 1631-1636. doi:10.1007/s007050170085
[24] H. Berniak, M. Kamińska and T. Malinowski, “Cucumber mosaic virus Groups IA and II Are Represented among Isolates from Naturally Infected Lilies,” European Journal of Plant Pathology, Vol. 127, No. 3, 2010, pp. 305- 309. doi:10.1007/s10658-010-9600-6
[25] D. Gallitelli, “The Ecology of Cucumber mosaic virus and Sustainable Agriculture,” Virus Research, Vol. 71, No. 1-2, 2000, pp. 9-21. doi:10.1016/S0168-1702(00)00184-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.