Review: Plant Binary Vectors of Ti Plasmid in Agrobacterium tumefaciens with a Broad Host-Range Replicon of pRK2, pRi, pSa or pVS1


This review chronicles the development of the plant binary vectors of Ti plasmid in Agrobacterium tumefaciens during the last 30 years. A binary vector strategy was designed in 1983 to separate the T-DNA region in a small plasmid from the virulence genes in avirulent T-DNA-less Ti plasmid. The small plant vectors with the T-DNA region have been simply now called binary Ti vectors. A binary Ti vector consist of a broad host-range replicon for propagation in A. tumeraciens, an antibiotic resistance gene for bacterial selection and the T-DNA region that would be transferred to the plant genome via the bacterial virulence machinery. The T-DNA region delimited by the right and left border sequences contains an antibiotic resistance gene for plant selection, reporter gene, and/or any genes of interest. The ColEI replicon was also added to the plasmid backbone to enhance the propagation in Escherichia coli. A general trend in the binary vector development has been to increase the plasmid stability during a long co-cultivation period of A. tumefaciens with the target host plant tissues. A second trend is to understand the molecular mechanism of broad host-range replication, and to use it to reduce the size of plasmid for ease in cloning and for higher plasmid yield in E. coli. The broad host-range replicon of VS1 was shown to be a choice of replicon over those of pRK2, pRi and pSA because of the superior stability and of small well-defined replicon. Newly developed plant binary vectors pLSU has the small size of plasmid backbone (4566 bp) consisting of VS1 replicon (2654 bp), ColE1 replicon (715 bp), a bacterial kanamycin (999 bp) or tetracycline resistance gene, and the T-DNA region (152 bp).

Share and Cite:

N. Murai, "Review: Plant Binary Vectors of Ti Plasmid in Agrobacterium tumefaciens with a Broad Host-Range Replicon of pRK2, pRi, pSa or pVS1," American Journal of Plant Sciences, Vol. 4 No. 4, 2013, pp. 932-939. doi: 10.4236/ajps.2013.44115.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. F. Smith and C. O. Towsend, “A Plant Tumor of Bacterial Origin,” Science, Vol. 25, No. 643, 1907, pp. 671- 673. doi:10.1126/science.25.643.671
[2] I. Zaenen, N. Van Larebeke, H. Teuchy, M. Van Montagu and J. Schell, “Supercoiled Circular DNA in Crown-Gall Inducing Agrobacterium Strains,” Journal Molecular Biology, Vol. 86, No. 1, 1974, pp. 117-127. doi:10.1016/S0022-2836(74)80011-2
[3] M. D. Chilton, M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester, “Stable Incorporation of Plasmid DNA into Higher Plant Cells: The Molecular Basis of Crown Gall Tumorigenesis,” Cell, Vol. 11, No. 2, 1977, pp. 263-271. doi:10.1016/0092-8674(77)90043-5
[4] J. R. Zupan and P. Zambryski, “Transfer of T-DNA from Agrobacterium to the Plant Cell,” Plant Physiology, Vol, 107, No. 4, 1995, pp. 1041-1047. doi:10.1104/pp.107.4.1041
[5] J. Sheng and V. Citovsky, “Agrobacterium-Plant Cell DNA Transport: Have Virulence Proteins, Will Travel,” Plant Cell, Vol. 8, No. 10, 1996, pp. 1699-1710.
[6] S. B. Gelvin, “Agrobacterium-Mediated Plant Transformation: The Biology behind the ‘Gene-Jockeying’ Tool,” Microbiology Molecular Biology Reviews, Vol. 67, No. 1, 2003, pp. 16-37.
[7] P. Zambryski, H. Joos, C. Genetello, J. Leemans, M. Van Montagu and J. Schell, “Ti Plasmid Vector for the Introduction of DNA into Plant Cells without Alteration of Their Normal Regeneration Capacity,” EMBO Journal, Vol. 2, No. 12, 1983, pp. 2143-2150.
[8] N. Murai, D. W. Sutton, M. G. Murray, J. L. Slightom, D. J. Merlo, N. A. Reichert, C. Sengupta-Gopalan, C. A. Stock, R. F. Baker, J. D. Kemp and T. C. Hall, “Phaseolin Gene from Bean Is Expressed after Transfer to Sunflower via Tumor-Inducing Plasmid Vectors,” Science, Vol. 222, No. 4623, 1983, pp. 476-482.
[9] A. Hoekema, P. R. Hirsch, P. J. J. Hooykas and R. A. Schilperoort, “A Binary Plant Vector Strategy Based on Separation of Vir- and T-Region of the Agrobacterium tumefaciens Ti Plasmid,” Nature, Vol. 303, 1983, pp. 179-180. doi:10.1038/303179a0
[10] R. Hellens, P. Mullineaux and H. Klee, “A Guide to Agrobacterium Binary Ti Vectors,” Trends in Plant Science, Vol. 5, No. 10, 2000, pp. 446-448.
[11] T. Komori, T. Imayama, N. Kato, Y. Ishida, Y. Ueki and T. Komari, “Current Status of Binary Vectors and Superbinary Vectors,” Plant Physiology, Vol. 145, No. 4, 2007, pp. 1155-1160.
[12] G. Ditta, S. Stanfield, D. Corbin and D. R. Helinski, “Broad Host Range DNA Cloning System for Gram- Negative Bacteria: Construction of a Gene Bank of Rhizobium meliloti,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 77, No. 12, 1980, pp. 7347-7351. doi:10.1073/pnas.77.12.7347
[13] T. J. Schmidhauser and D. R. Helinski, “Regions of Broad-Host-Range Plasmids RK2 Involved in Replication and Stable Maintenance in Nine Species of Gram-Negative Bacteria,” Journal of Bacteriology, Vol. 164, No. 1, 1985, pp. 446-455.
[14] C. Koncz and J. Schell, “The Promoter of TL-DNA Gene 5 Controls the Tissue-Specific Expression of Chimeric Genes Carried by a Novel Type of Agrobacterium Binary Vector,” Molecular General Genetics, Vol. 204, No. 3, 1986, pp. 383-396. doi:10.1007/BF00331014
[15] C. Xiang, P. Han, I. Lutziger, K. Wang and D. J. Oliver, “A Mini Binary Vector Series for Plant Transformation,” Plant Molecular Biology, Vol. 40, No. 4, 1999, pp. 711- 717. doi:10.1023/A:1006201910593
[16] M. Bevan, “Binary Agrobacterium Vectors for Plant Transformation,” Nucleic Acids Research, Vol. 12, No. 22, 1984, pp. 8711-8721. doi:10.1093/nar/12.22.8711
[17] R. A. Jefferson, “Assaying Chimeric Genes in Plants: The GUS Gene Fusion System,” Plant Molecular Biology Reporter, Vol. 5, No. 4, 1987, pp. 387-405. doi:10.1007/BF02667740
[18] D. Becker, “Binary Vectors Which Allow the Exchange of Plant Selectable Markers and Reporter Genes,” Nucleic Acid Research, Vol. 18, No. 1, 1990, p. 203. doi:10.1093/nar/18.1.203
[19] P. Van den Elzen, K. Y. Lee, J. Townsend and J. Bedbrook, “Simple Binary Vectors for DNA Transfer to Plant Cells,” Plant Molecular Biology, Vol. 5, No. 3, 1985, pp. 149-154. doi:10.1007/BF00015678
[20] C. Sengupta-Gopalan, N. A. Reichert, R. F. Baker, T. C. Hall and J. D. Kemp, “Developmentally Regulated Expression of the β-Phaseolin Gene in Tobacco Seed,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, No. 10, 1985, pp. 3320-3324. doi:10.1073/pnas.82.10.3320
[21] N. E. Olszewski, F. B. Martin and F. M. Ausubel, “Specialized Binary Vector for Plant Transformation; Expression of the Arabidopsis thaliana AHAS Gene in Nicotiana tabacum,” Nucleic Acids Research, Vol. 16, No. 22, 1988, pp. 10765-10782. doi:10.1093/nar/16.22.10765
[22] J. D. G. Jones, L. Shlumukov, F. Carland, J. English, S. R. Scofield, G. J. Bishop and K. Harrison, “Effective Vectors for Transformation, Expression of Heterologous Genes, and Assaying Transposon Excision in Transgenic Plants,” Transgenic Research, Vol. 1, No. 6, 1992, pp. 285-297. doi:10.1007/BF02525170
[23] A. F. Bent, B. N. Kunkel, D. Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung and B. J. Staskawicz, “RPS2 of Arabidopsis thaliana: A Leucine-Rich Repeat Class of Plant Disease Resistance Genes,” Science, Vol. 265, No. 5180, 1994, pp. 1856-1860. doi:10.1126/science.8091210
[24] Q. Tao and H.-B. Zhang, “Cloning and Stable Maintenance of DNA Fragments over 300 kb in Escherichia coli with Conventional Plasmid-Base Vectors,” Nucleic Acid Research, Vol. 26, No. 21, 1998, pp. 4901-4909. doi:10.1093/nar/26.21.4901
[25] G. An, B. D. Watson, S. Stachel, M. P. Gordon and E. W. Nester, “New Cloning Vehicles for Transformation of Higher Plants,” EMBO Journal, Vol. 4, No. 2, 1985, pp. 277-284.
[26] G. An, “High Efficiency Transformation of Cultured Tobacco Cells,” Plant Physiology, Vol. 79, No. 2, 1985, pp. 568-570. doi:10.1104/pp.79.2.568
[27] M. D. Burow, P. Sen, C. A. Chlan and N. Murai, “Developmental Control of the β-Phaseolin Gene Requires Positive, Negative, and Temporal Seed-Specific Transcriptional Regulatory Elements and Negative Element for Stem and Root Expression,” Plant Journal, Vol. 2, No. 4, 1992, pp. 537-548. doi:10.1111/j.1365-313X.1992.00537.x
[28] C. Koncz, N. Martini, R. Mayerhofer, Z. Koncz-Kalma, H. Korber, G. Redei and J. Schell, “High-Frequency T- DNA-Mediated Gene Tagging in Plants,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 86, No. 21, 1989, pp. 8467-8471. doi:10.1073/pnas.86.21.8467
[29] B. Reiss, C. Koncz, I. Moore and J. Schell, “A Family of Binary Gene Vectors with Low Inter-Transformant Variation,” Plant Physiol. (Life Sci. Adv.), Vol. 13, 1994, pp. 143-149.
[30] C. Simoens, T. Alliotte, R. Mendel, S. Muller, J. Schiemann, M. van Lijsebettens, J. Schell, M. van Montagu and D. Inze, “A Binary Vector for Transferring Genomic Libraries to Plants,” Nucleic Acids Research, Vol. 14, No. 20, 1986, pp. 8073-8090. doi:10.1093/nar/14.20.8073
[31] K. E. McBride and K. D. Summerfelt, “Improved Binary Vectors for Agrobacterium-Mediated Plant Transformation,” Plant Molecular Biology, Vol. 14, No. 2, 1990, pp. 269-276. doi:10.1007/BF00018567
[32] R. P. Hellens, E. Z. Edwards, N. R. Leyland, S. Bean and P. M. Mullineaux, “pGreen: A Versatile and Flexible Binary Ti Vectors for Agrobacterium-Mediated Plant Transformation,” Plant Molecular Biology, Vol. 42, No. 6, 2000, pp. 819-831. doi:10.1023/A:1006496308160
[33] L. I. A. Calderon-Villalobos, C. Kuhnle, H. Li, M. Rosso, B. Weisshaar and C. Schwechheimer, “LucTrap Vectors Are Tools to General Luciferase Fusions for the Quantification to Transcript and Protein Abundance in Vivo,” Plant Physiology, Vol. 141, No. 1, 2006, pp. 3-14. doi:10.1104/pp.106.078097
[34] V. Thole, B. Worland, J. W. Snape and P. Vain, “The pCLEAN Dual Binary Vector System for Agrobacterium-Mediated Plant Transformation,” Plant Physiology, Vol. 145, No. 4, 2007, pp. 1211-1219. doi:10.1104/pp.107.108563
[35] Y. Itoh, J. M. Watson, D. Haas and T. Leisinger, “Genetic and Molecular Characterization of the Pseudomonas Plasmid pVS1,” Plasmid, Vol. 11, No. 3, 1984, pp. 206-220. doi:10.1016/0147-619X(84)90027-1
[36] Y. Itoh and D. Haas, “Cloning Vectors Derived from the Pseudomonas Plasmid pVS1,” Gene, Vol. 36, No. 1-2, 1985, pp. 27-36. doi:10.1016/0378-1119(85)90066-6
[37] G. Van den Eede, R. Deblaere, K. Goethals, M. Van Montagu and M. Holsters, “Broad Host Range and Promoter Selection Vectors for Bacteria That Interact with Plants,” Molecular Plant-Microbe Interactions, Vol. 5, No. 3, 1992, pp. 228-234. doi:10.1094/MPMI-5-228
[38] S. Heeb, Y. Itoh, T. Nishijyo, U. Schnider, C. Keel, J. Wade, U. Walsh, F. O’Gara and D. Haas, “Small, Stable Shuttle Vectors Based on the Minimal pVS1 Replicon for Use in Gram-Negative, Plant-Associated Bacteria,” Molecular Plant-Microbe Interactions, Vol. 13, No. 2, 2000, pp. 232-237. doi:10.1094/MPMI.2000.13.2.232
[39] P. Hajdukiewicz, Z. Svab and P. Maliga, “The Small, Versatile pPZP Family of Agrobacterium Binary Vectors for Plant Transformation,” Plant Molecular Biology, Vol. 25, No. 6, 1994, pp. 989-994. doi:10.1007/BF00014672
[40] I. J. W. M. Goderis, M. F. C. De Bolle, I. E. J. A. Francois, P. F. J. Wouters, W. F. Broekaert and B. P. A. Cammue, “A Set of Modular Plant Transformation Vectors Allowing Flexible Insertion of up to Six Expression Units,” Plant Molecular Biology, Vol. 50, No. 1, 2002, pp. 17-27. doi:10.1023/A:1016052416053
[41] T. Tzfira, G. W. Tian, B. Lacroix, S. Vyas, J. Li, Y. Leitner-Dagan, A. Krichevsky, T. Taylor, A. Vainstein and V. Citovsky, “pSAT Vectors: A Modular Series of Plasmids for Autofluorescent Protein Tagging and Expression of Multiple Genes in Plants,” Plant Molecular Biology, Vol. 57, No. 4, 2005, pp. 503-516. doi:10.1007/s11103-005-0340-5
[42] S. Lee, “New Binary Ti Vectors with Co-Directional Replicons for Agrobacteium tumefaciens-Mediated Transformation of Higher Plants,” Ph.D. Thesis, Louisiana State University, Baton Rouge, 2011.
[43] S. Lee, G. Su, E. Lasserre, M. A. Aghazadeh and N. Murai, “Smaller High-Yielding Binary Ti Vectors pLSU with Co-Directional Replicons for Agrobacterum tumefaciens-Mediated Transformation of Higher Plants,” Plant Science, Vol. 187, 2012, pp. 49-58.
[44] G. Su, S. Park, S. Lee and N. Murai, “Low Co-Cultivation Temperature at 20?C Resulted in the Reproducible Maximum Increase in Both the Fresh Weight Yield and Stable Expression of GUS Activity after Agrobacterium tumefaciens-Mediated Transformation of Tobacco Leaf Disks,” American Journal of Plant Sciences, Vol. 3, No. 4, 2012, pp. 537-545.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.