Direct pre-differentiation of rat mesenchymal stem cells into dopaminergic cells


The use of stem cells has been proposed as an alternative treatment for certain neurodegenerative disorders. It has also been suggested that in the pre-differentiated state, stem cells might provide a better therapeutic option than cells that are undifferentiated or fully differentiated. The purpose of this study was to develop a protocol aimed at reducing the incubation time required to induce the conversion of rat mesenchymal stem cells into immature dopaminergic neurons. Stem cells obtained from rat bone marrow were incubated in a control or induction media for 2-24 h. Cells incubated for 24 h in induction medium demonstrated an increase on the levels of the neuronal protein markers nestin, glial fibrillary acid protein, and β-tubulin III, as well as increases in the expression of Pax3, EN1, Thy1.1, and GEF10 genes. This manuscript presents evidence that adult mesenchymal cells are capable to respond, in a short time period, to a neuroinduction medium, and give raise to pre-differentiated neuron like cells representing an alternative for Parkinson disease cell therapy transplantation.

Share and Cite:

Zavala-Arcos, J. , Gonzalez-Garza, M. , Gutierrez-Alcala, J. , Martinez, H. and Moreno-Cuevas, J. (2013) Direct pre-differentiation of rat mesenchymal stem cells into dopaminergic cells. Stem Cell Discovery, 3, 133-138. doi: 10.4236/scd.2013.32018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mizuno, Y., Hattori, N., Kubo, S., et al. (2008) Progress in the pathogenesis and genetics of Parkinson’s disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 2215-2227. doi:10.1098/rstb.2008.2273
[2] Savitt, J.M., Dawson, V.L. and Dawson, T.M. (2006) Diagnosis and treatment of Parkinson disease: Molecules to medicine. Journal of Clinical Investigation, 116, 1744-1754. doi:10.1172/JCI29178
[3] Bjorklund, L.M., Sánchez-Pernaute, R., Chung, S., et al. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America, 99, 2344-2349. doi:10.1073/pnas.022438099
[4] Cho, Y.H., Kim, D.S., Kim, P.G., Hwang, et al. (2006) Dopamine neurons derived from embryonic stem cells efficiently induce behavioral recovery in a Parkinsonian rat model. Biochemical and Biophysical Research Communications, 341, 6-12. doi:10.1016/j.bbrc.2005.12.140
[5] Mine, Y., Hayashi, T., Yamada, M., Okano, H. and Kawase, T. (2009) Environmental cue-dependent dopaminergic neuronal differentiation and functional effect of grafted neuroepithelial stem cells in parkinsonian brain. Neurosurgery, 65, 741-753. doi:10.1227/01.NEU.0000351281.45986.76
[6] Ben-Hur, T., Idelson, M., Khaner, H., et al. (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells, 22, 1246-1255. doi:10.1634/stemcells.2004-0094
[7] Freed, C.R., Greene, P.E., Breeze, R.E., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344, 710-719. doi:10.1056/NEJM200103083441002
[8] Kordower, J.H., Freeman, T.B., Snow, B.J., et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. New England Journal of Medicine, 332, 1118-1124. doi:10.1056/NEJM199504273321702
[9] Brundin, P., Pogarell, O., Hagell, P., et al. (2000) Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain, 123, 1380-1390. doi:10.1093/brain/123.7.1380
[10] Piccini, P., Pavese, N., Hagell, P., et al. (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain, 128, 2977-2986. doi:10.1093/brain/awh649
[11] Chu, Y., & Kordower, J.H. (2010) Lewy body pathology in fetal grafts. Annals of the New York Academic of Science, 1184, 55-67. doi:10.1111/j.1749-6632.2009.05229.x
[12] Li, J.Y., Englund, E., Widner, H., et al. (2010) Characterization of lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Movement Disorder, 25, 1091-1096. doi:10.1002/mds.23012
[13] Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Südhof, T.C. and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035-1041. doi:10.1038/nature08797
[14] Pfisterer, U., Kirkeby, A., Torper, O., et al. (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343-10348. doi:10.1073/pnas.1105135108
[15] Pang, Z.P., Yang, N., Vierbuchen, T., et al. (2011) Induction of human neuronal cells by defined transcription factors. Nature, 476, 220-223. doi:10.1038/nature10202
[16] Blandini, F., Cova, L., Armentero, M.T., et al. (2010) Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplantation, 19, 203-217. doi:10.3727/096368909X479839
[17] Khoo, M.L., Tao, H., Meedeniya, A.C., Mackay-Sim, A. and Ma, D.D. (2011) Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One, 6, e19025. doi:10.1371/journal.pone.0019025
[18] Binato, R., de Souza Fernandez, T., Lazzarotto-Silva, C., et al. (2013) Stability of human mesenchymal stem cells during in vitro culture: Considerations for cell therapy. Cell Proliferation, 46, 10-22. doi:10.1111/cpr.12002
[19] Montzka, K., Lassonczyky, N., Tshoke, B., et al. (2009) Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells. BMC Neuroscience, 10, 16. doi:10.1186/1471-2202-10-16?
[20] Lu, P., Blesch, A. and Tuszynski, M. (2004) Induction of bone marrow stromal cells to neurons: Differentiation, transdifferentiation or artifact? Journal of Neuroscience Research, 77, 174-191. doi:10.1002/jnr.20148
[21] Croft, A. and Przyborski, S. (1999) Formation of neurons by non-neural adult stem cells: Potential mechanism implicates an artifact of growth in culture. Stem Cells, 24, 1841-1851. doi:10.1634/stemcells.2005-0609
[22] Ren, X.D., Kiosses, W.B. and Schwartz, M.A. (1999) Regulation of the small GTP binding protein Rho by cell adhesion and the cytoskeleton. EMBO Journal, 18, 578-585. doi:10.1093/emboj/18.3.578
[23] Yujiri, T., Fanger, G.R., Garrington, T.P., Schlesinger, T.K., Gibson, S. and Johnson, G.L. (1999) MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activetion in response to changes in the microtubule cytoskeleton. Journal of Biological Chemistry, 274, 12605-12610. doi:10.1074/jbc.274.18.12605
[24] Subbaramaiah, K., Hart, J.C. and Norton, L. (2000) Dannenberg AJ Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of RK1/2 AND p38 mitogen-activated protein kinase pathways. Journal of Biological Chemistry, 275, 14838-14845. doi:10.1074/jbc.275.20.14838
[25] Gale, E. and Li, M. (2008) Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Molecular Brain, 1, 8. doi:10.1186/1756-6606-1-8
[26] Bjorklund, A. and Dunnett, S. (2007) Dopamine neuron systems in the brain: An update. Trends in Neuroscience, 30, 194-202. doi:10.1016/j.tins.2007.03.006?
[27] Hammond, R., Blaes, S. and Abeliovich, A. (2009) Sonic hedgehog is a chemoattractant for midbrain dopaminergic axons. PLoS One, 4, e7007. doi:10.1371/journal.pone.0007007
[28] Hyman, C., Hofer, M., Barde, Y., et al. (1991) BDNF is a neutrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230-232. doi:10.1038/350230a0
[29] Volpicelli, F., Caiazzo, M., Greco, D., et al. (2007) BDNF gene is a downstream target of Nurr1 transcription factor in rat midbrain neurons in vitro. Journal of Neurochemistry, 102, 441-453. doi:10.1111/j.1471-4159.2007.04494.x
[30] Bang, A., Papalopulu, N., Kintner, C. and Goulding, M. (1997) Expression of Pax3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development, 124, 2075-2085.
[31] Goulding, M., Chalepakis, G., Deutsch, U., Erselius, J.R. and Gruss, P. (1991) Pax3, a novel murine DNA-binding protein expressed during early neurogenesis. EMBO Journal, 10, 1135-1147.
[32] Daubner, S.C., Le, T. and Wang, S. (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Archieves of Biochemistry and Biophysics, 508, 1-12. doi:10.1016/
[33] Verhoeven, K., Jonghe, P., Putte, T., et al. (2003) Slowed conduction and thin myelination of peripheral nerves associated with mutant Rho guanine-nucleotide exchange factor 10. American Journal of Human Genetics, 73, 926-932. doi:10.1086/378159
[34] Schmidt, A. and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: Turning on the switch. Genes and development, 16, 1587-1609. doi:10.1101/gad.1003302
[35] Michalczyk, K. and Ziman, M. (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histology and histopathology, 20, 665-671.
[36] Canola, K., Angenieux, B., Tekaya, M., et al. (2007) Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Investigative ophthalmology and visual science, 48, 446-454. doi:10.1167/iovs.06-0190
[37] MacLaren, R.E., Pearson, R.A., MacNeil, A. et al. (2006) Retinal repair by transplantation of photoreceptor precursors. Nature, 444, 203-207. doi:10.1038/nature05161
[38] Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247-256. doi:10.1006/exnr.2000.7389

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.