Distinct functions of Dnmt3a and Dnmt3b de novo DNA methyltransferases in ES cell proliferation and differentiation


Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, have been identified in humans and mice to contribute to the methylation of unmodified DNA. We recently showed a transition of de novo DNA methyltransferase expression from Dnmt3b to Dnmt3a during mouse embryogenesis and in tissue-specific stem cells, suggesting distinct functions of Dnmt3a and Dnmt3b during these processes. In this study, to characterize the functions of Dnmt3a and Dnmt3b in pluripotent stem cells, we exogenously transfected ES cells with Dnmt3a and Dnmt3b cDNAs linked to an internal ribosome entry site-green fluorescent protein gene, and then analyzed the effects of expression of these de novo DNA methyltransferases on ES cell growth and differentiation. ES cells expressing Dnmt3b showed specific downregulation of pluripotency marker genes such as Nanog and Oct 3/4. In addition, Dnmt3a-transfected ES cells showed a specific increase in mitotic index, while Dnmt3b-transfected ES cells showed a decrease in mitotic index. These results suggest that Dnmt3b has important physiological roles in the initial process of stem cell differentiation and that Dnmt3a has a function in stem cell proliferation.

Share and Cite:

Umehara, Y. , Hanaoka, K. and Watanabe, D. (2013) Distinct functions of Dnmt3a and Dnmt3b de novo DNA methyltransferases in ES cell proliferation and differentiation. Stem Cell Discovery, 3, 127-132. doi: 10.4236/scd.2013.32017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Reik, W. and Walter, J. (2001) Genomic imprinting: Parental influence on the genome. Nature Reviews Genetics, 2, 21-32. doi:10.1038/35047554
[2] Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes & Development, 16, 6-21. doi:10.1101/gad.947102
[3] Bestor, T.H. (2005) Transposons reanimated in mice. Cell, 122, 322-235. doi:10.1016/j.cell. 2005.07.024
[4] Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3, 415-428.
[5] Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., McCune, R.A. and Gehrke, C. (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Research, 10, 2709-2721. doi:10.1093/nar/10.8.2709
[6] Reik, W., Dean, W. and Walter, J. (2001) Epigenetic reprogramming in mammalian development. Science, 293, 1089-1093. doi:10.1126/science.1063443
[7] Bestor, T., Laudano, A., Mattaliano, R. and Ingram, V. (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. Journal of Molecular Biology, 203, 971-983. doi:10.1016/0022-2836(88)90122-2
[8] Yen, R.W., Vertino, P.M., Nelkin, B.D., Yu, J.J., El-Deiry, W., Cumaraswamy, A., Lennon, G.G., Trask, B.J., Celano, P. and Baylin, S.B. (1992) Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Research, 20, 2287-2291. doi:10.1093/nar/20.9.2287
[9] Okano, M., Xie, S. and Li, E. (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219-220. doi:10.1038/890
[10] Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He, W.W., Okumura, K. and Li, E. (1999) Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene, 236, 87-95. doi:10.1016/S0378-1119(99)00252-8
[11] Li, E., Bestor, T.H. and Jaenisch, R. (2002) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915-926. doi:10.1016/0092-8674(92)90611-F
[12] Okano, M., Bell, D.W., Haber, D.A. and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247-257. doi:10.1016/S0092-8674(00)81656-6
[13] Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E. and Sasaki, H. (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429, 900-903. doi:10.1038/nature02633
[14] Watanabe, D., Suetake, I., Tada, T. and Tajima, S. (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mechanisms of Development, 118, 187-190. doi:10.1016/S0925-4773(02)00242-3
[15] Watanabe, D., Suetake, I., Tajima, S. and Hanaoka, K. (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. Gene Expression Patterns, 5, 43-49. doi:10.1016/j.modgep.2004.06.008
[16] Watanabe, D., Uchiyama, K. and Hanaoka, K. (2006) Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience, 142, 727-737 doi:10.1016/j.neuroscience.2006.07.053
[17] Chen, T., Tsujimoto, N. and Li, E. (2004) The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Molecular and cellular biology, 20, 9048-9058. doi:10.1128/MCB.24.20.9048-9058.2004
[18] Lanner, F., Lee, K.L., Sohl, M., Holmborn, K., Yang, H., Wilbertz, J., Poellinger, L., Rossant, J. and Farnebo, F. (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells, 28, 191-200.
[19] Li, J.Y., Pu, M.T., Hirasawa, R., Li, B.Z., Huang, Y.N., Zeng, R., Jing, N.H., Chen, T., Li, E., Sasaki, H. and Xu, G.L. (2007) Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in themethylation of Oct4 and Nanog. Molecular and cellular biology, 27, 8748-8759. doi:10.1128/MCB.01380-07
[20] Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A. and Ramanathan, S. (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell, 145, 875-889. doi:10.1016/j.cell.2011.05.017
[21] Hirasawa, R. and Sasaki, H. (2009) Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expression Patterns, 9, 27-30. doi:10.1016/j.gep.2008.09.002

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.