The Role of Microstructure of Highly Purified Beta-Tricalcium Phosphate for Osteoinduction in Canine Dorsal Muscles


Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and also investigated how bone formation was promoted using β-TCP combined with bone marrow aspirates. We prepared two types of β-TCP, namely, β-TCP A, which possessed interconnected macropores and micropores, and β-TCP B, which possessed macropores but had less detectable micropores. These were implanted with or without marrow in canine muscles. Bone formation and the resorption of each β-TCP implant were evaluated histologically. Newly formed bone began to appear at day 42 in the implants of β-TCP A alone, but the implants of β-TCP B alone did not show any bone formation by day 42. Meanwhile, bone formation was already evident on day 14 by loading with bone marrow aspirates with or without micropores. By immunohistochemistry, the number of cathepsin K-positive cells (osteoclasts) increased as time passed in the implants of β-TCP A alone, while the number of the osteoclasts did not change obviously in the implants of β-TCP B alone from day 14 to 56. Reticular fibrils were evident within the β-TCP A, and were barely observed in the β-TCP B in the silver impregnation. The present result would bring about the possible role to enhance the importance of the surface microstructure for the better osteoinductivity. Our findings suggest that the combination of porous β-TCP and bone marrow facilitates bone formation.

Share and Cite:

T. Ariizumi, A. Ogose, N. Kondo, H. Kawashima, T. Hotta, N. Kudo, M. Hoshino, H. Inoue, H. Irie and N. Endo, "The Role of Microstructure of Highly Purified Beta-Tricalcium Phosphate for Osteoinduction in Canine Dorsal Muscles," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2, 2013, pp. 189-193. doi: 10.4236/jbnb.2013.42023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Yamamoto, T. Onga, T. Marui and K. Mizuno, “Use of Hydroxyapatite to Fill Cavities after Excision of Benign Bone Tumours. Clinical Results,” Journal of Bone and Joint Surgery, British Volume, Vol. 82, No. 3, 2000, pp. 1117-1120. doi:10.1302/0301-620X.82B8.11194
[2] A. Uchida, N. Araki, Y. Shinto, H. Yoshikawa, E. Kurisaki and K. Ono, “The Use of Calcium Hydroxyapatite Ceramic in Bone Tumour Surgery,” Journal of Bone and Joint Surgery, British Volume, Vol. 72, No. 2, 1990, pp. 298-302.
[3] A. Ogose, T. Hotta, H. Hatano, H. Kawashima, K. Tokunaga, N. Endo and H. Umezu, “Histological Examination of Beta-Tricalcium Phosphate Graft in Human Femur,” Journal of Biomedical Materials Research, Vol. 63, No. 5, 2002, pp. 601-604. doi:10.1002/jbm.10380
[4] A. Ogose, T. Hotta, H. Kawashima, N. Kondo, W. Gu, T. Kamura and N. Endo, “Comparison of Hydroxyapatite and Beta Tricalcium Phosphate as Bone Substitutes after Excision of Bone Tumors,” Journal of Biomedical Materials Research, Part B, Applied Biomaterials, Vol. 72, No. 1, 2005, pp. 94-101. doi:10.1002/jbm.b.30136
[5] A. Ogose, N. Kondo, H. Umezu, T. Hotta, H. Kawashima, K. Tokunaga, T. Ito, N. Kudo, M. Hoshino, W. Gu and N. Endo, “Histological Assessment in Grafts of Highly Purified Beta-Tricalcium Phosphate (OSferion) in Human Bones,” Biomaterials, Vol. 27, No. 8, 2006, pp. 15421549. doi:10.1016/j.biomaterials.2005.08.034
[6] N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, H. Inoue, H. Irie and N. Endo, “Bone Formation and Resorption of Highly Purified Beta-Tricalcium Phosphate in the Rat Femoral Condyle,” Biomaterials, Vol. 26, No. 28, 2005, pp. 5600-5608. doi:10.1016/j.biomaterials.2005.02.026
[7] N. Kondo, A. Ogose, K. Tokunaga, H. Umezu, K. Arai, N. Kudo, M. Hoshino, H. Inoue, H. Irie, K. Kuroda, H. Mera and N. Endo, “Osteoinduction with Highly Purified BetaTricalcium Phosphate in Dog Dorsal Muscles and the Proliferation of Osteoclasts before Heterotopic Bone Formation,” Biomaterials, Vol. 27, No. 25, 2006, pp. 44194427. doi:10.1016/j.biomaterials.2006.04.016
[8] K. Shiratori, K. Matsuzaka, Y. Koike, S. Murakami, M. Shimono and T. Inoue, “Bone Formation in Beta-Tricalcium Phosphate-Filled Bone Defects of the Rat Femur: Morphometric Analysis and Expression of Bone Related Protein mRNA,” Biomedical Research, Vol. 26, No. 2, 2005, pp. 51-59. doi:10.2220/biomedres.26.51
[9] Y. Okubo, K. Bessho, K. Fujimura, Y. Konishi, K. Kusumoto, Y. Ogawa and T. Iizuka, “Osteoinduction by Recombinant Human Bone Morphogenetic Protein-2 at Intramuscular, Intermuscular, Subcutaneous and Intrafatty Sites,” International Journal of Oral and Maxillofacial Surgery, Vol. 29, No. 1, 2000, pp. 62-66. doi:10.1016/S0901-5027(00)80127-7
[10] D. Le Nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace, P. Pilet and P. Layrolle, “Ectopic Bone Formation by Microporous Calcium Phosphate Ceramic Particles in Sheep Muscles,” Bone, Vol. 36, No. 6, 2005, pp. 1086-1093. doi:10.1016/j.bone.2005.02.017
[11] P. Habibovic, H. Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterswijk and K. de Groot, “3D Microenvironment as Essential Element for Osteoinduction by Biomaterials,” Biomaterials, Vol. 26, No. 17, 2005, pp. 35653575. doi:10.1016/j.biomaterials.2004.09.056
[12] T. Yoshii, S. Sotome, I. Torigoe, A. Tsuchiya, H. Maehara, S. Ichinose and K. Shinomiya, “Fresh Bone Marrow Introduction into Porous Scaffolds Using a Simple LowPressure Loading Method for Effective Osteogenesis in a Rabbit Model,” Journal of Orthopaedic Research, Vol. 27, No. 1, 2009, pp. 1-7. doi:10.1002/jor.20630
[13] B. R. Troen, “Cathepsin K Plays a Critical Role in the Degradation of Bone and Appears to Be a Limiting Step in Osteoclastic Bone Resorption,” Drug News & Perspectives, Vol. 17, No. 1, 2004, pp. 19-28. doi:10.1358/dnp.2004.17.1.829022
[14] T. Ushiki, “Collagen Fibers, Reticular Fibers and Elastic Fibers. A Comprehensive Understanding from a Morphological Viewpoint,” Archives of Histology and Cytology, Vol. 65, No. 2, 2002, pp. 109-126. doi:10.1679/aohc.65.109
[15] H. Ohgushi, V. M. Goldberg and A. I. Caplan, “Heterotopic Osteogenesis in Porous Ceramics Induced by Marrow Cells,” Journal of Orthopaedic Research, Vol. 7, No. 4, 1989, pp. 568-78. doi:10.1002/jor.1100070415
[16] H. Yuan, K. Kurashina, J. D. de Bruijn, Y. Li, K. de Groot and X. Zhang, “A Preliminary Study on Osteoinduction of Two Kinds of Calcium Phosphate Ceramics,” Biomaterials, Vol. 20, No. 19, 1999, pp. 1799-1806. doi:10.1016/S0142-9612(99)00075-7
[17] S. Fujibayashi, M. Neo, H. M. Kim, T. Kokubo and T. Nakamura, “Osteoinduction of Porous Bioactive Titanium Metal,” Biomaterials, Vol. 25, No. 3, 2004, pp. 443450. doi:10.1016/S0142-9612(03)00551-9
[18] T. Tanaka, M. Saito, M. Chazono, Y. Kumagae, T. Kikuchi, S. Kitasato and K. Marumo, “Effects of Alendronate on Bone Formation and Osteoclastic Resorption after Implantation of Beta-Tricalcium Phosphate,” Journal of Biomedical Materials Research, Part A, Vol. 93, No. 2, 2010, pp. 469-474.
[19] M. Chazono, T. Tanaka, S. Kitasato, T. Kikuchi and K. Marumo, “Electron Microscopic Study on Bone Formation and Bioresorption after Implantation of Beta-Tricalcium Phosphate in Rabbit Models,” Journal of Orthopaedic Science, Vol. 13, No. 6, 2008, pp. 550-555. doi:10.1007/s00776-008-1271-1
[20] A. Ogose, N. Kondo, N. Kudo, T. Hotta, N. Endo, H. Irie, H. Inoue and M. Ohishi, “Collagen Fibrils within Micropores of β-Tricalcium Phosphate with Cultured Cells,” Japanese Society of Orthopaedic Ceramic Implants, Vol. 25, No. 1, 2005, pp. 15-18.
[21] M. C. von Doernberg, B. von Rechenberg, M. Bohner, S. Grünenfelder, G. H. van Lenthe, R. Müller, B. Gasser, R. Mathys, G. Baroud and J. Auer, “In Vivo Behavior of Calcium Phosphate Scaffolds with Four Different Pore Sizes,” Biomaterials, Vol. 27, No. 30, 2006, pp. 5186-5198. doi:10.1016/j.biomaterials.2006.05.051

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.