Re-Evaluation of Attractor Neural Network Model to Explain Double Dissociation in Semantic Memory Disorder


Structure of semantic memory was investigated in the way of neural network simulations in detail. In the literature, it is well-known that brain damaged patients often showed category specific disorder in various cognitive neuropsychological tasks like picture naming, categorisation, identification tasks and so on. In order to describe semantic memory disorder of brain damaged patients, the attractor neural network model originally proposed Hinton and Shallice (1991) was employed and was tried to re-evaluate the model performance. Especially, in order to answer the question about organization of semantic memory, how our semantic memories are organized, computer simulations were conducted. After the model learned data set (Tyler, Moss, Durrant-Peatfield, & Levy, 2000), units in hidden and cleanup layers were removed and observed its performances. The results showed category specificity. This model could also explain the double dissociation phenomena. In spite of the simplicity of its architecture, the attractor neural network might be considered to mimic human behavior in the meaning of semantic memory organization and its disorder. Although this model could explain various phenomenon in cognitive neuropsychology, it might become obvious that this model had one limitation to explain human behavior. As far as investigation in this study, asymmetry in category specificity between animate and inanimate objects might not be explained on this model without any additional assumptions. Therefore, further studies must be required to improve our understanding for semantic memory organisation.

Share and Cite:

Asakawa, S. (2013). Re-Evaluation of Attractor Neural Network Model to Explain Double Dissociation in Semantic Memory Disorder. Psychology, 4, 363-373. doi: 10.4236/psych.2013.43A053.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bullinaria, J. A. (1999). Connectionisit dissociations, confounding factors and modularity. Proceedings of the Fifth Neural Computation and Psychology Workshop, 52-63.
[2] Capitani, E., Laiaconna, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20, 213-261. doi:10.1080/02643290244000266
[3] Caramazza, A., Hillis, A., Rapp, B. C., & Romani, C. (1990). The multiple semantics hypothesis: Multiple confusions? Cognitive Neuropsycholgy, 7, 161-189. doi:10.1080/02643299008253441
[4] Caramazza, A., & Shelton, J. (1998). Domain specific knowledge system in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 1-34. doi:10.1162/089892998563752
[5] De Renzi, E., & Lucchelli, F. (1994). Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 30, 3-25.
[6] Devlin, J., Gonnerman, L., Andersen, E., & Seidenberg, M. (1998). Category specific semantic deficits in focal and widespred brain damage: A computational account. Journal of Cognitive Neuroscience, 10, 77-94. doi:10.1162/089892998563798
[7] Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120, 339-357. doi:10.1037/0096-3445.120.4.339
[8] Hillis, A., & Caramazza, A. (1991). Category-specific naming and comprehension impairment: A double dissociation. Brain, 114, 2081-2094. doi:10.1093/brain/114.5.2081
[9] Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired dyslexia. Psychological Review, 98, 74-95. doi:10.1037/0033-295X.98.1.74
[10] Humphreys, G. W., & Forde, E. M. (2001). Hierarchies, similarity, and interactivity in object recognition: “Categoryspecific” neuropsychological deficits. Behavioral and Brain Sciences, 24, 453-509.
[11] Josephs, J. E. (2001). Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 1, 119-136. doi:10.3758/CABN.1.2.119
[12] Lewis, J. W. (2006). Cortical networks related to human use of tools. Neuroscientist, 12, 211-231. doi:10.1177/1073858406288327
[13] Martin, A., & Caramazza, A. (2003). Neuropsychological and neuroimaging perspectives on conceptual knowledge: An introduction. Cognitive Neuropsychology, 20, 195-212. doi:10.1080/02643290342000050
[14] Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11, 194-201. doi:10.1016/S0959-4388(00)00196-3
[15] Nielsen, J. M. (1946). Agnosia, apraxia, aphasia: Their value in cerebral localization. New York: Hoeber.
[16] Patterson, K., Plaut, D., McClelland, J. L., Seidenberg, M. S., Behrmann, M., & Hoges, J. R. (1996). Connections and disconnections: A connectionist account of surface dyslexia. In J. Reggia, & E. Ruppin (Eds.), Neural modeling of cognitive and brain disorders (pp. 177-199). New York: World Scientific.
[17] Perry, C. (1999). Testing a computational account of category-specic decits. Journal of Cognitive Neuroscience, 11, 312-320. doi:10.1162/089892999563418
[18] Plaut, D. (1995). Double dissociation without modularity: Evidence from connectionist neuropsychology. Journal of Clinical and Expremental Neuropsychology, 17, 291-231. doi:10.1080/01688639508405124
[19] Plaut, D. (2001). A connectionist approach to word reading and acquired dyslexia: Extension to sequential processing. In M. H. Christiansen, & N. Charter (Eds.), Connectionist Psycholinguistics (pp. 244-278). Westport, CT: Ablex Publishing.
[20] Plaut, D., MaClelland, J. L., & Seidenberg, M. S. (1995). Reading exception words and pseudowords: Are two routes really necessary? In J. P. Levy, D. Bairaktaris, J. A. Bullinaria, & P. Cairns (Eds.), Proceedings of the Second Neural Computation and Psychology Workshop. London: University College London Press.
[21] Plaut, D., McClelland, J. L., & Seidenberg, M. S. (1995). Reading exception words and pseudowords: Are two routes really necessary? In J. P. Levy, D. Bairaktaris, J. A. Bullinaria, & P. Cairns (Eds.), Connectionist Models of Memory and Language (pp. 145-159). London: University College London Press.
[22] Plaut, D., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology, 10, 377-500. doi:10.1080/02643299308253469
[23] Seidenberg, M. S., Alan, P., Plaut, D., & MacDonald, M. C. (1996). Pseudohomophone effects and models of word recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 48-62. doi:10.1037/0278-7393.22.1.48
[24] Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review, 96, 523-568. doi:10.1037/0033-295X.96.4.523
[25] Seidenberg, M. S., Plaut, D., Petersen, A. S., McClelland, J. L., & McRae, K. (1994). Nonword pronunciation and models of word recognition. Journal of Experimental Psychology: Human Perception and Performance, 20, 1177-1196. doi:10.1037/0096-1523.20.6.1177
[26] Simmons, W. K., & Barasalou, L.W. (2003). The similarity-in-topography principle: Reconciling theories of conceptual deficits. Cognitive Neuropsychology, 20, 451-486. doi:10.1080/02643290342000032
[27] Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where”. Neuropsychologia, 41, 280-292. doi:10.1016/S0028-3932(02)00161-6
[28] Tyler, L., Moss, H. E., Durrant-Peatfield, M. R., & Levy, J. P. (2000). Conceptual structure and the structure of concepts: A distributed account of category-specific deficits. Brain and Language, 75, 195-231. doi:10.1006/brln.2000.2353
[29] Warrington, E. K. (1981). Neuropsychological studies of verbal semantic systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 295, 411-423. doi:10.1098/rstb.1981.0149
[30] Warrington, E. K., & McCarthy, R. (1983). Category specific access dysphasia. Brain, 106, 859-878. doi:10.1093/brain/106.4.859
[31] Warrington, E. K., & McCarthy, R. (1994). Multiple meaning systems in the brain: A case for visual semantics. Neuropsychologica, 32, 1465-1473. doi:10.1016/0028-3932(94)90118-X
[32] Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge further fracitonations and an attempted integration. Brain, 110, 1273-1296. doi:10.1093/brain/110.5.1273
[33] Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairment. Brain, 107, 829-854. doi:10.1093/brain/107.3.829

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.