Simultaneous Measurability of Error and Disturbance


The uncertainty relation, which displays an elementary property of quantum theory, was originally described by Heisenberg as the relation between error and disturbance. Ozawa presented a more rigorous expression of the uncertainty relation, which was later verified experimentally. Nevertheless, the operators corresponding to error and disturbance should be measurable in the identical state if we follow the presupposition of Heisenbergs thought experiment. In this letter, we discuss simultaneous measurability of error and disturbance and present a new inequality using error and disturbance in the identical state. A testable example of this inequality is also suggested.

Share and Cite:

R. Mochizuki, "Simultaneous Measurability of Error and Disturbance," Journal of Modern Physics, Vol. 4 No. 2, 2013, pp. 267-271. doi: 10.4236/jmp.2013.42036.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Heisenberg, “über den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik, Vol. 43, No. 3-4, 1927, pp. 172-198. doi:10.1007/BF01397280
[2] E. H. Kennard, “Zur Quantenmechanik Einfacher Bewegungstypen,” Zeitschrift für Physik, Vol. 44, No. 4-5, 1927, pp. 326-352. doi:10.1007/BF01391200
[3] H. P. Robertson, “The Uncertainty Principle,” Physical Review, Vol. 34, No. 1, 1929, pp. 163-164. doi:10.1103/PhysRev.34.163
[4] J. von Neumann, “Die Mathematische Grundlagen der Quantenmechanik,” Springer Verlag, Berlin, 1932.
[5] M. Ozawa, “Universally Valid Reformulation of the Heisenberg Uncertainty Principle on Noise and Disturbance in Measurement,” Physical Review, Vol. A67, No. 4, 2003, 6 p. doi:10.1103/PhysRevA.67.042105
[6] M. Ozawa, “Physical Content of Heisenberg’s Uncertainty Relation: Limitation and Reformulation,” Physics Letters A, Vol. 318, No. 1-2, 2003, pp. 21-29. doi:10.1016/j.physleta.2003.07.025
[7] M. Ozawa, “Uncertainty Relations for Noise and Disturbance in Generalized Quantum Measurements,” Annals of Physics, Vol. 311, No. 2, 2004, pp. 350-416. doi:10.1016/j.aop.2003.12.012
[8] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa and Y. Hasegawa, “Experimental Demonstration of a Universally Valid Error-Disturbance Uncertainty Relation in Spin-Measurements,” Nature Physics, Vol. 8, 2012, 11 p. doi:10.1038/nphys2194
[9] R. F. Werner, “The Uncertainty Relation for Joint Measurement of Position and Momentum,” Quantum Infformation and Computation, Vol. 4, 2004, Article ID: arXiv:quant- ph/0405184.
[10] K. Koshino and A. Shimizu, “Quantum Zeno Effect by General Measurements,” Physics Report, Vol. 412, No. 191, 2005, Article ID: arXiv:puant-ph/0411145.
[11] Y. Watanabe, T. Sagawa and M. Ueda, “Optimal Measurement on Noisy Quantum Systems,” Physical Review Letters, Vol. 104, No. 2, 2010, 4 p. doi:10.1103/PhysRevLett.104.020401
[12] Y. Watanabe, T. Sagawa and M. Ueda, “Uncertainty Relation Revisited from Quantum Estimation Theory,” Quantum Physics, Article ID: arXiv:1010.3571[quant-ph].
[13] Y. Watanabe and M. Ueda, “Quantum Estimation Theory of Error and Disturbance in Quantum Measurement,” Article ID: arXiv:1106.2526[quant-ph]
[14] M. Ozawa, “Quantum Reality and Measurement: A Quantum Logical Approach,” Foundation of Physics, Vol. 41, 2011, pp. 592-607.
[15] J. Dressel, S. Agarwal and A. N. Jordan, “Contextual Values of Observables in Quantum Measurements,” Physical Review Letters, Vol. 104, 2010, 4 p.
[16] J. Dressel and A. N. Jordan, “Contextual-Value Approach to the Generalized Measurement of Observables,” Physical Review A, Vol. 85, No. 2, 2012, 32 p. doi:10.1103/PhysRevA.85.022123
[17] M. Ozawa, “Universal Uncertainty Principle, Simultaneous Measurability, and Weak Values,” AIP Conference Proceedings, Brisbane, 19 July 2011, pp. 53-62.
[18] K. Svozil, “Quantum Logic,” Springer-Verlag, Singapore City, 1998.
[19] S. Maeda, “Lattice Theory and Quantum Logic,” Maki-Shoten, Tokyo, 1980.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.