Change in reproductive and dispersal traits in the water strider, Aquarius paludum (Fabricius) and global warming


This study aims to examine the following three hypotheses on the impact of global warming on the populations of the water strider, Aquarius paludum in the Kochi-Nankoku area (3330'N) of Kochi prefecture, Japan through the recent data collected in 2009-2011. 1) Has the generation number increased? 2) Has aestivation appeared in adults? 3) Have overwintering adults stopped dispersing between the water surface and overwintering lands-sites far away from water and, instead, overwintered on/near the shore? Sampling data showed that the number of generations may have increased from three (1989-2002 strains) and four (2004-2008) to five (2009-2011) per year in Kochi (33N). The ratio of adults having well developed flight muscles decreased from 45% in 1995 to 24% - 28% in 2009-2011 inoverwintering adults collected from the field in fall likely as a result of histolysis. “Mosaic-typed” wing morph group with long fore-wings and short hind-wings newly appeared in 2009-2011 in the Kochi-Nankoku overwintering populations. The mosaic-typed wings group cannot fly and the black and long fore wings might function as absorbing apparatus of sun-lights in the daytime of winter. Some overwintering adults seem to stop migrating between water bodies and overwintering sites on land far from the water bodies and overwinter, instead, near the shore. The use of Aquarius paludum as a biological indicator would be possible in the future, because this species can respond and change their reproductive and dispersal characteristics to the global change.

Share and Cite:

Harada, T. , Shiraki, T. , Takenaka, S. , Sekimoto, T. , Emi, K. and Furutani, T. (2013) Change in reproductive and dispersal traits in the water strider, Aquarius paludum (Fabricius) and global warming. Natural Science, 5, 156-163. doi: 10.4236/ns.2013.51A024.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C Hassell, M.P., Godfray, H.C.J. and Comins, H.N. (1993) Effects of global change on the dynamics of insect hostparasitoid interactions. In: Kareiva, P.M., et al., Eds., Biotic Interactions and Global Change, Sinauer, Sunderland, 402-424.
[2] Imura, O., Morimoto, N. and Kiura, T. (1993) Potential effect of global warming on the distribution of insects in Japan. In Kiura, T., Ed., Proceedings of International Symposium on Insect Diversity Research in Korea, Chuncheon, 44-57.
[3] Harrington, R. and Stork, N.E. (1995) Insects in a changing environment. Academic Press, New York.
[4] Kiritani, K. (2001) Insects and climates. Seizando, Tokyo.
[5] Reiter, P. (2008) Global warming and malaria: Knowing the horse before hitching the cart. Malaria Journal, S3, 1-9.
[6] Schweiger, O., Settele, J., Kudrna, O., Klotz, S. and Kühn, I. (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology, 89, 3472-3479. doi:10.1890/07-1748.1
[7] Zell, R., Krumbholz, A. and Wurzler, P. (2008) Impact of global warming on viral diseases: What is the evidence? Current Opinion in Biotechnology, 19, 652-660. doi:10.1016/j.copbio.2008.10.009
[8] Hegland, S.J., Nielsen, A., La′ zaro1, A., Bjerknes, A.-L. and Totland, O. (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195. doi:10.1111/j.1461-0248.2008.01269.x
[9] Kiritani, K. (2011) Impacts of global warming on Nezara viridula and its native congeneric species. Journal of Asia-Pacific Entomology, 14, 221-226. doi:10.1016/j.aspen.2010.09.002
[10] Parmesan, C. (1996) Climate and species range. Nature, 382, 765-766. doi:10.1038/382765a0
[11] Netherer, S. and Schopt, A. (2010) Potential effects of climate change on insect herbivores in European forests —General aspects and the pine processionary moth as specific example. Forest Ecology and Management, 259, 831-838. doi:10.1016/j.foreco.2009.07.034
[12] Ikemoto, T. (2008) Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963-969. doi:10.1603/0022-2585(2008)45[963:TMDNMH]2.0.CO;2
[13] Paz, S. and Albersheim, I. (2008) Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile Fever outbreaks (Israeli Case Study: 2001-2005). Eco Health, 5, 40-48. doi:10.1007/s10393-007-0150-0
[14] Massad, E., Antonio, F., Coutinho, B., Fernandez Lopez, L. and da Silva, D.R. (2011) Modeling the impact of global warming on vector-borne infections. Physics of Life Reviews, 8, 169-199.
[15] Wernegreen, J.J. (2012) Mutualism meltdown in insects: Bacteria constrain thermal Adaptation. Current Opinion in Microbiology, 15, 255-262. doi:10.1016/j.mib.2012.02.001
[16] Gomi, T. (2007) Seasonal adaptations of the fall webworm Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) following its invasion of Japan. Ecological Research, 22, 855-861. doi:10.1007/s11284-006-0327-y
[17] Moriyama, M. and Numata, H. (2011) A cicada that ensures its fitness during climate warming by synchronizing its hatching time with the rainy season. Zoological Science, 28, 875-881. doi:10.2108/zsj.28.875
[18] Sgolastra, F., Kempb, W.P., Maini, S. and Bosch, J. (2012) Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia. Journal of Insect Physiology, 58, 924-933. doi:10.1016/j.jinsphys.2012.04.008
[19] Andersen, N.M. (1990) Phylogeny and taxonomy of water striders, genus Aquarius Schellenberg (Insecta, Hemiptera, Gerridae), with a new species from Australia. Steenstrupia, 16, 37-81.
[20] Harada, T. and Numata, H. (1993) Two critical day lengths for the determination of wing forms and the induction of adult diapause in the water strider, Aquarius paludum. Naturwissenschaften, 80, 430-432. doi:10.1007/BF01168342
[21] Inoue, T. and Harada, T. (1997) Lengthening photophase reduces dispersal ability in a water strider, Aquarius paludum (F.). Naturwissenschaften, 84, 306-308. doi:10.1007/s001140050400
[22] Harada, T., Nitta, S. and Ito, K. (2005) Photoperiodism changes according to global warming in wing-form determination and diapause induction of a water strider, Aquarius paludum (Heteroptera: Gerridae). Applied Entomology and Zoology, 40, 461-466. doi:10.1303/aez.2005.461
[23] Harada, T., Takenaka, S., Maihara, S., Ito, K. and Tamura, T. (2011) Changes in life-history traits of the water strider Aquarius paludum in accordance with global warming. Physiological Entomology, 36, 309-316. doi:10.1111/j.1365-3032.2011.00798.x
[24] Harada, T., Tabuchi, R. and Koura, J. (1997) Migratory syndrome in the water strider Aquarius paludum (Heteroptera: Gerridae) reared in high versus low nymphal densities. European Journal of Entomology, 94, 445-452.
[25] Harada, T. and Nishimoto, T. (2007) Feeding conditions modify the photoperiodically induced dispersal of the water strider, Aquarius paludum (Heteroptera: Gerridae). European Journal of Entomologyi, 104, 33-37.
[26] Harada, T., Inoue, T., Ono, I., Kawamura, N., Kishi, M., Doi, K., Inoue, S. and Hodkova, M. (2000) Endocrine, ecophysiological and ecological aspects of seasonal adaptations in a water strider, Aquarius paludum (a mini review). Entomological Science, 3, 157-165.
[27] Kochi Meteorological Station (1995-2011) Annual report of Kochi meteorological station.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.