Antidepressant Activities of the Methanol Extract, Petroleum Ether and Ethyl Acetate Fractions of Morus mesozygia Stem Bark


Morus mesozygia Stapf (Moraceae) is the only Morus species indigenous to Tropical Africa. It is believed in traditional medicine that the plant exhibits several medicinal properties. The antidepressant-like activities of the crude methanol extract, petroleum ether and ethyl acetate fractions were investigated using the Forced Swimming Test (FST) and Tail Suspension Test (TST) models. The petroleum ether fraction at a dose of 140 mg/kg was the most effective in both the FST and TST when compared to the activity of the reference drug Imipramine (250 mg/kg) by reducing the immobility duration of the animals by 66.8% and 49.4% respectively.

Share and Cite:

F. Adediwura and O. Bola, "Antidepressant Activities of the Methanol Extract, Petroleum Ether and Ethyl Acetate Fractions of Morus mesozygia Stem Bark," Pharmacology & Pharmacy, Vol. 4 No. 1, 2013, pp. 100-103. doi: 10.4236/pp.2013.41014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. M. Burkill, “The Useful Plants of West Tropical Africa,” Economic Botany & Ethnobotany, Vol. 1, 1985, p. 319.
[2] Z. O. Gbile, “Vernacular Names of Nigerian Plants (Yoruba),” Forestry Research Institute of Nigeria, Ibadan, 1984.
[3] G. D. W. F. Kapche, C. D. Fozing, J. H. Donfack, G. W. Fotso, D. Amadou, A. N. Tchana, M. Bezabih, P. F. Moundipa, B. T. Ngadjui and B. M. Abegaz, “Prenylated Arylbenzofuran Derivatives from Morus mesozygia with Antioxidant Activity,” Phytochemistry, Vol. 70, No. 2, 2009, pp. 216-221.
[4] G. W. D. Kapche, D. Amadou, P. Waffo-Teguo, J. H. Donfack, C. D. Fozing, D. Harakat, A. N. Tchana, J. M. Merillon, P. F. Moundipa, B. T. Ngadjul and B. M. Abegaz, “Hepatoprotective and Antioxidant Arylbenzofurans and Flavonoids from the Twigs of Morus mesozygia,” Planta Medica, Vol. 77, No. 10, 2011, pp. 1044-1047
[5] W. C. Evans, “Pharmacognosy,” 15th Edition, Saunders, London, 2009, p. 585.
[6] J. B. Haborne, “Method of Extraction and Isolation,” Phytochemical Methods, 3rd Edition, Chapman and Hall, London, 1998, pp. 60-66.
[7] V. K. Sharma, N. S. Chauhan, S. Lodhi and A. K. Singhai, “Anti-Depressant Activity of Zizyphus xylopyrus,” International Journal of Phytomedicine, Vol. 1, 2009, pp. 12-17. doi:10.5138/ijpm.2009.0975.0185.05788
[8] R. D. Porsolt, M. Le Pichon and M. Jalfre, “Depression: A New Animal Model Sensitive to Antidepressant Treatments,” Nature, Vol. 266, No. 5604, 1977, pp. 730-732.
[9] R. Porsolt, G. Anton and M. Jafre, “Behavioural Despair in Rats: A New Model Sensitive to Antidepressant Treatments,” European Journal of Pharmacology, Vol. 47, No. 4, 1978, pp. 379-391.
[10] L. Steru, R. Chermat, B. Thierry and P. Simon, “The Tail Suspension Test: A New Method for Screening Antidepressants in Mice,” Psychopharmacology, Vol. 85, No. 3, 1985, pp. 367-370.
[11] M. A. Whooley and G. E. Simon, “Managing Depression in Medical Outpatients,” New England Journal of Medicine, Vol. 343, 2000, pp. 1942-1950. doi:10.1056/NEJM200012283432607
[12] J. J. Schildkraut, “The Catecholamine Hypothesis of Effective Disorders: A Review of Supporting Evidence,” American Psychiatric Association, Vol. 122, No. 5, 1965, pp. 509-522.
[13] World Health Organization, “WHO Director-General Unveils New Global Strategies for Mental Health,” Press Release WHO/99-67, 1999.
[14] W. Song, H. Wang, P. Bucheli, P. Zhang, D. Wel and Y. Lu, “Phytochemical Profiles of Different Mulberry (Morus sp) Species from China,” Journal of Agricultural and Food Chemistry, Vol. 57, No. 19, 2009, pp. 9133- 9140. doi:10.1021/jf9022228
[15] S. K. Bhattacharya, K. S. Satyan and M. Ramanathan, “Experimental Methods for Evaluation of Psychotropic Agents in Rodents: II Antidepressants,” Indian Journal of Experimental Biology, Vol. 37, No. 2, 1999, pp. 117-123.
[16] R. Daudt, G. L. Von Poser, G. Neves and S. M. K. Rates, “Screening for Antidepressant Activity of Some Hypericum from South Brazil,” Phytotherapy Research, Vol. 14, No. 5, 2000, pp. 344-346.
[17] M. J. Detke, M. Rickels and I. Lucki, “Active Behavior in the Rat Forced Swimming Test Differently Produced by Serotonrgic and Noradrenergic Antidepressants,” Psychopharmacology, Vol. 121, No. 1, 1995, pp. 66-72.
[18] V. Butterweck, G. Jurgenliemk, A. Nahrstedt and H. Winterhoff, “Flavonoids from Hypericum Perforatum Show Antidepressant Activity in the Forced Swimming Test,” Planta Medica, Vol. 66, No. 1, 2000, pp. 3-6.
[19] V. Butterweck, S. Nishibe, T. Saasaki and M. Uchida, “Antidepressant Effects of Apocynum venetum Leaves in Forced Swimming Test,” Biological & Pharmaceutical Bulletin, Vol. 24, No. 7, 2001, pp. 848-851.
[20] M. Nolder and K. Schotz, “Rutin in Essential for the Antidepressant Activity of Hypericum perforatum Extracts in Forced Swimming Test,” Planta Medica, Vol. 68, No. 7, 2002, pp. 577-580.
[21] V. D. Bokkenheuser, C. H. Shackleton and J. Winter, “Hydrolysis of Dietary Flavonoids Glycosides by Strains of Intestinal Bacterioides from Humans,” Biochemical Journal, Vol. 248, 1987, pp. 953-956.
[22] T. Walle, “Absorption and Metabolism of Flavonoids,” Free Radical Biology & Medicine, Vol. 36, No. 7, 2004, pp. 829-837.
[23] P. M. Umadevi, S. S. Jennifer and S. Subakanmani, “Evaluation of Antidepressant Like Activity of Curcubita Pepo Seed Extracts in Rats,” International Journal of Current Pharmaceutical Research, Vol. 3, No. 1, 2011, pp. 108-113.
[24] K. Yamaura, N. Nakayama, M. Shimada, Y. Bi, H. Fukata and K. Ueno, “Antidepressant-Like Effects of Young Green Barley Leaf (Hordeum vulgare L.) in the Mouse Forced Swimming Test,” Pharmacognosy Research, Vol. 4, No. 1, 2012, pp. 22-26.
[25] D. Tsang, H. W. Yeung, W. W. Tso and H. Peck, “Ginseng Saponins: Influence on Neurotransmitter Uptake in Rat Brain Synaptosomes,” Planta Medica, Vol. 51, No. 3, 1985, pp. 221-224.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.