Effect of Growth Morphology on the Electronic Structure of Epitaxial Graphene on SiC

Abstract

Ultraviolet photoemission spectroscopy is used to investigate the electronic structure of epitaxial graphene grown by the thermal decomposition of the carbon face of 4H SiC. We find that the growth of the film on the chemical mechanically polished and hydrogen etched surface enhances spectral features in the valence band structure compared to the film grown on an unpolished hydrogen etched substrate. This result is indicative of a more highly ordered surface structure compared to the morphologically rough material and shows that substrate preparation plays an important role in the quality of the film. The work function of the smooth surface film is found to be 0.4 eV higher than that for graphite and 0.1 eV less than for the rough surface growth.

Share and Cite:

M. Williams and D. Hess, "Effect of Growth Morphology on the Electronic Structure of Epitaxial Graphene on SiC," Graphene, Vol. 2 No. 1, 2013, pp. 55-59. doi: 10.4236/graphene.2013.21008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L F. Shedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, “Detection of Individual Gas Molecules on Graphene,” Nature Mate- rials, Vol. 6, No. 9, 2007, pp. 652-655. doi:10.1038/nmat1967
[2] X. Wang, L. Zhi and K. Mullen, “Transparent, Conduc- tive Graphene Electrodes for Dye-Synthesized Solar Cells,” Nano Letters, Vol. 8, No. 1, 2008, pp. 323-327. doi:10.1021/nl072838r
[3] S. Gilje, S. Han, M. Wang, K. L. Wang and R. B. Kaner, “A Chemical Route to Graphene for Device Applica- tions,” Nano Letters, Vol. 7, No. 11, 2007, pp. 3394-3398. doi:10.1021/nl0717715
[4] W. A. de Heer, C. Berger, X. S. Wu, P. N. First, E. H. Conrad, X. B. Li, T. B. Li, Michael Sprinkle, Joanna Hass, Marcin L. Sadowski, Marek Potemski, and Gerard Mar- tinez, “Epitaxial Graphene,” Solid State Communications, Vol. 143, No. 1, 2007, pp. 92-100. doi:10.1016/j.ssc.2007.04.023
[5] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kel- logg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. R?hrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, “Toward Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide,” Nature Materials, Vol. 8, No. 3, 2009, pp. 203- 207. doi:10.1038/nmat2382
[6] W. Norimatsu, J. Takada and M. Kusunoki, “Formation Mechanism of Graphene Layers on SiC (0001) in a High- Pressure Argon Atmosphere,” Physical Review B, Vol. 84, No. 3, 2011, Article ID: 035424. doi:10.1103/PhysRevB.84.03542
[7] A. Turchanin, A. Beyer, Ch. T. Nottbohm, X. Zhang, R. Stosch, A. Sologubenko, J. Mayer, P. Hinze, T. Weimann, and A. G?lzh?user, “One Nanometer Thin Carbon Nano- sheets with Tunable Conductivity and Stiffness,” Advanc- ed Materials, Vol. 21, No. 12, 2009, pp. 1233-1237. doi:10.1002/adma.200803078
[8] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Va- por Deposition,” Nano Letters, Vol. 9, No. 1, 2009, pp. 30-35. doi:10.1021/nl801827v
[9] W. E. Spicer, “The Use of Photoemission to Determine the Electronic Structure of Solids,” Journal De Physique Colloques, Vol. 34, No. 6, 1973, pp. 19-33. doi:10.1051/jphyscol:1973607
[10] R. J. Koch, A. Reina, J. A. Schaefer and J. Kong, “Am- bient Pressure CVD Grown and Transferred Graphene: STM and UPS Study,” Unpublished, 2009.
[11] W. A. de Heer, C. Berger, M. Ruan, M. Sprinkle, X. Li, Y. Hu, B. Zhang, J. Hankinson and E. H. Conrad, “Large Area and Structured Epitaxial Graphene Produced by Confinement Controlled Sublimation of Silicon Carbide,” Proceedings National Academy of Sciences USA, Vol. 108, No. 41, 2011, pp. 16900-16905. doi:10.1073/pnas.1105113108
[12] M. D. Williams, D. K. Samarakoon, D. W. Hess and X.-Q. Wang, “Tunable Bands in Biased Multilayer Epitaxial Graphene,” Nanoscale, Vol. 4, No. 9, 2012, pp. 2962-2967. doi:10.1039/C2NR11991A
[13] Z. Chen and X.-Q. Wang, “Stacking-Dependent Optical Spectra and Many-Electron Effects in Bilayer Graphene,” Physical Review B, Vol. 83, No. 8, 2011, Article ID: 081405. doi:10.1103/PhysRevB.83.081405
[14] J. R. Cheliokowsky and M. L. Cohen, “Nonlocal Pseudopotential Calculations for the Electronic Structure of Eleven Diamond and Zinc-Blende Semiconductors,” Phy- sical Review B, Vol. 14, No. 2, 1976, pp. 556-582. doi:10.1103/PhysRevB.14.556

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.