Synergy between molecular biology and imaging science toward mechanism-based biomarkers associated with prostate cancer


Prostate cancer is a heterogeneous disease with subtypes that are characterized by different molecular profiles as a result of chromosomal rearrangements, epigenetic modifications, and activation of various signaling pathways. The subtype heterogeneity contributes to the challenges with a definitive diagnosis and biomarkers for disease progression. The current diagnostic test based on the detection of prostate specific antigen lacks sensitivity and specificity. Imaging plays an important role in characterizing biomarkers and elucidating the underlying molecular mechanisms. For example, 18F-fluoro-2-deoxy glucose is commonly used to assess cancer cell metabolism. More recently, magnetic resonance spectroscopic observations of the in vivo dynamic conversion of hyperpolarized 13C- pyruvate to lactate demonstrate that imaging enables the visualization of molecular processes. Biomarkers have also been developed that reveal aberrant cell growth and proliferation, both hallmarks of cancer. Androgen dependent and independent signaling path- ways underpin prostate cancer pathogenesis as they lead to downstream effect in cell growth, proliferation, survival, and suppression of apoptosis. Molecular imaging with radiolabeled ligands and positron emission tomography/computed tomography has provided quantitative characterization of the interactions between receptors and testosterone or growth factors. These observations, along with data on genetic alterations of the receptor genes, shed light on signal transduction involved in prostate cancer. This review article highlights advances in the understanding of the molecular mechanisms of prostate cancer and the synergy of this knowledge with imaging in characterizing potential biomarkers of the disease.

Share and Cite:

Seto, B. (2012) Synergy between molecular biology and imaging science toward mechanism-based biomarkers associated with prostate cancer. Journal of Biomedical Science and Engineering, 5, 845-852. doi: 10.4236/jbise.2012.512A107.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Imanishi, T., Itoh, T., Suzuki, Y., O’Donovan, C., Fukuchi, S., Koyanagi, K.O., et al. (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biology, 6, e162. doi:10.1371/journal.pbio.0020162
[2] Collins, F.S., Green, E.D., Guttmacher, A.E. and Guyer, M.S. (2003) A vision for the future of genomics research. Nature, 422, 835-847. doi:10.1038/nature01626
[3] Mimeault, M. and Batra, S.K. (2011) Frequent gene pro- ducts and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and no- vel promising multitargeted therapies. Molecular Medi- cine, 17, 949-964.
[4] Altieri, D.C., Languino, L.R., Lian, J.B., Stein, J.L., Leav, I., van Wijnen, A.J., et al. (2009) Prostate cancer regulatory networks. Journal of Cellular Biochemistry, 107, 845- 852. doi:10.1002/jcb.22162
[5] US Preventive Services Task Force (2012) Screening for prostate cancer.
[6] Martin, S.K., Vaughan, T.B., Atkinson, T., Zhu, H. and Kyprianou, N. (2012) Emerging biomarkers of prostate cancer (Review). Oncology Reports, 409-417. doi:10.3892/or.2012.1832
[7] Hessels, D., van Gils, M.P., van Hooij, O., Jannink, S.A., Witjes, J.A., Verhaegh, G.W., et al. (2010) Predictive value of PCA3 in urinary sediments in determining cli- nico-pathological characteristics of prostate cancer. Prostate, 70, 10-16. doi:10.1002/pros.21032
[8] Gu, Z., Thomas, G., Yamashiro, J., Shintaku, I.P., Dorey, F., Raitano, A., et al. (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, ad- vanced stage and bone metastasis in prostate cancer. On- cogene, 19, 1288-1296. doi:10.1038/sj.onc.1203426
[9] Warburg, O., Wind, F. and Negelein, E. (1927) Themetabolism of tumors in the body. Journal of General Physiology, 6, 519-530. doi:10.1085/jgp.8.6.519
[10] Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309-314. doi:10.1126/science.123.3191.309
[11] Seth, P., Grant, A., Tang, J., Vinogradov, E., Wang, X., Lenkinski, R., et al. (2011) On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate. Neoplasia, 13, 60-71.
[12] Chen, A.P., Albers, M.J., Cunningham, C.H., Kohler, S.J., Yen, Y.F., Hurd, R.E., et al. (2007) Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience. Magnetic Resonance in Medicine, 58, 1099- 1106. doi:10.1002/mrm.21256
[13] Chen, A.P., Kurhanewicz, J., Bok, R., Xu, D., Joun, D., Zhang, V., et al. (2008) Feasibility of using hyperpolar- ized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magnetic Resonance Imaging, 26, 721- 726. doi:10.1016/j.mri.2008.01.002
[14] Kurhanewicz, J., Vigneron, D.B., Brindle, K., Chekme- nev, E.Y., Comment, A., Cunningham, C.H., et al. (2011) Analysis of cancer metabolism by imaging hyperpolar- ized nuclei: Prospects for translation to clinical research. Neoplasia, 13, 81-97.
[15] Vallabhajosula, S. (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor local- ization. Seminars in Nuclear Medicine, 37, 400-419. doi:10.1053/j.semnuclmed.2007.08.004
[16] Turcotte, E., Wiens, L.W., Grierson, J.R., Peterson, L.M., Wener, M.H. and Vesselle, H. (2007) Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to pre- viously investigated therapeutic FLT doses. BMC Nu- clear Medicine, 7, 3. doi:10.1186/1471-2385-7-3
[17] Leyton, J., Smith, G., Zhao, Y., Perumal, M., Nguyen, Q.D., Robins, E., et al. (2009) [18F]fluoromethyl-[1,2- 2H4]-choline: A novel radiotracer for imaging choline metabolism in tumors by positron emission tomography. Cancer Research, 69, 7721-7728. doi:10.1158/0008-5472.CAN-09-1419
[18] Jiang, Z., Piao, D., Bartels, K.E., Holyoak, G.R., Ritchey, J.W., Ownby, C.L., et al. (2011) Transrectal ultrasound- integrated spectral optical tomography of hypoxic progression of a regressing tumor in a canine prostate. Technology in Cancer Research and Treatment, 10, 519-531.
[19] Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1, 27-31. doi:10.1038/nm0195-27
[20] Risau, W. (1997) Mechanisms of angiogenesis. Nature, 386, 671-674.
[21] Costa, L.J. and Drabkin, H.A. (2007) Renal cell carci- noma: New developments in molecular biology and po- tential for targeted therapies. Oncologist, 12, 1404-1415. doi:10.1634/theoncologist.12-12-1404
[22] Samlowski, W.E., Wong, B. and Vogelzang, N.J. (2008) Management of renal cancer in the tyrosine kinase in- hibitor era: A view from 3 years on. BJU International, 2, 162-165. doi:10.1111/j.1464-410X.2008.07670.x
[23] Lim, E.H., Danthi, N., Bednarski, M. and Li, K.C. (2005) A review: Integrin alphavbeta3-targeted molecular imag- ing and therapy in angiogenesis. Nanomedicine, 1, 110- 114. doi:10.1016/j.nano.2005.03.008
[24] Munshi, H.G. and Stack, M.S. (2006) Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer and Metastasis Reviews, 25, 45-56. doi:10.1007/s10555-006-7888-7
[25] Zeisel, S.H. (1993) Choline phospholipids: Signal transduction and carcinogenesis. FASEB Journal, 7, 551-557.
[26] Zeisel, S.H. (1995) Nutrients, signal transduction and carcinogenesis. Advances in Experimental Medicine and Biology, 369, 175-183. doi:10.1007/978-1-4615-1957-7_16
[27] Mena, E., Turkbey, B., Mani, H., Adler, S., Valera, V.A., Bernardo, M., et al. (2012) 11C-Acetate PET/CT in localized prostate cancer: A study with MRI and histopathologic correlation. Journal of Nuclear Medicine, 53, 538- 545. doi:10.2967/jnumed.111.096032
[28] Leung, K. (2004) Quenched indocyanine green-anti-pros- tate-specific membrane antigen antibody J591. Molecular Imaging and Contrast Agent Database (MICAD), Bethesda.
[29] Nanus, D.M., Milowsky, M.I., Kostakoglu, L., Smith-Jones, P.M., Vallabahajosula, S., Goldsmith, S.J., et al. (2003) Clinical use of monoclonal antibody HuJ591 therapy: Targeting prostate specific membrane antigen. Journal of Urology, 170, S84-S88.
[30] Nargund, V., Al Hashmi, D., Kumar, P., Gordon, S., Otitie, U., Ellison, D., et al. (2005) Imaging with radiolabelled monoclonal antibody (MUJ591) to prostate-specific membrane antigen in staging of clinically localized prostatic carcinoma: Comparison with clinical, surgical and histological staging. BJU International, 95, 1232- 1236. doi:10.1111/j.1464-410X.2005.05511.x
[31] Kahn, D., Williams, R.D., Haseman, M.K., Reed, N.L., Miller, S.J. and Gerstbrein, J. (1998) Radioimmunoscintigraphy with In-111-labeled capromabpendetide predicts prostate cancer response to salvage radiotherapy after failed radical prostatectomy. Journal of Clinical Oncol- ogy, 20, 284-289.
[32] Kahn, D., Williams, R.D., Manyak, M.J., Haseman, M.K., Seldin, D.W., Libertino, J.A., et al. (1998) 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. Journal of Urology, 16, 2041-2046.
[33] Holmes, E.H. (2001) PSMA specific antibodies and their diagnostic and therapeutic use. Expert Opinion on Investigational Drugs, 10, 511-519. doi:10.1517/13543784.10.3.511
[34] Wolf, P., Freudenberg, N., Buhler, P., Alt, K., Schultze- Seemann, W., Wetterauer, U., et al. (2010) Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate, 70, 562-569.
[35] Tomlins, S.A., Aubin, S.M., Siddiqui, J., Lonigro, R.J., Sefton-Miller, L., Miick, S., et al. (2011) Urine TMPRSS2: ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Science Translational Medicine, 3, 72.
[36] Tomlins, S.A., Bjartell, A., Chinnaiyan, A.M., Jenster, G., Nam, R.K., Rubin, M.A., et al. (2009) ETS gene fusions in prostate cancer: From discovery to daily clinical prac- tice. European Urology, 56, 275-286. doi:10.1016/j.eururo.2009.04.036
[37] Stott, S.L., Lee, R.J., Nagrath, S., Yu, M., Miyamoto, D.T., Ulkus, L., et al. (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Science Translational Medicine, 2, 25-23.
[38] Liu, W., Ewing, C.M., Chang, B.L., Li, T., Sun, J., Tur-ner, A.R., et al. (2007) Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer, 46, 972-980. doi:10.1002/gcc.20482
[39] Danila, D.C., Anand, A., Sung, C.C., Heller, G., Leversha, M.A., Cao, L., et al. (2011) TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensi- tivity in castration-resistant prostate cancer patients treated with abiraterone acetate. European Urology, 60, 897- 904. doi:10.1016/j.eururo.2011.07.011
[40] Dahlman, K.B., Parker, J.S., Shamu, T., Hieronymus, H., Chapinski, C., Carver, B., et al. (2012) Modulators of prostate cancer cell proliferation and viability identified by short-hairpin RNA library screening. PLoS One, 7, e34414. doi:10.1371/journal.pone.0034414
[41] Kaarbo, M., Klokk, T.I. and Saatcioglu, F. (2007) An- drogen signaling and its interactions with other signaling pathways in prostate cancer. BioEssays, 29, 1227-1238. doi:10.1002/bies.20676
[42] Ulmert, D., Evans, M.J., Holland, J.P., Rice, S.L., Wong- vipat, J., Pettersson, K., et al. (2012) Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen. Cancer Discovery, 2, 320-327. doi:10.1158/2159-8290.CD-11-0316
[43] Tomlins, S.A., Mehra, R., Rhodes, D.R., Smith, L.R., Roulston, D., Helgesson, B.E., et al. (2006) TMPRSS2: ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Research, 66, 3396-3400. doi:10.1158/0008-5472.CAN-06-0168
[44] Tomlins, S.A., Rhodes, D.R., Perner, S., Dhanasekaran, S.M., Mehra, R., Sun, X.W., et al. (2006) Recurrent fu- sion of TMPRSS2 and ETS transcription factors in prostate cancer. FASEB Journal, 20, A1327-A1327.
[45] Gupta, S., Iljin, K., Sara, H., Mpindi, J.P., Mirtti, T., Vainio, P., et al. (2010) FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-tomesenchymaltransition in human prostate Cancer Cells. Cancer Research, 70, 6735-6745. doi:10.1158/0008-5472.CAN-10-0244
[46] Iljin, K., Wolf, M., Edgren, H., Gupta, S., Kilpinen, S., Skotheim, R.I., et al. (2006) TMPRSS2 fusions with on- cogenic ETS factors in prostate cancer involve unbal- anced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Re- search, 66, 10242-10246. doi:10.1158/0008-5472.CAN-06-1986
[47] Yu, J.D., Yu, J.J., Mani, R.S., Cao, Q., Brenner, C.J., Cao, X.H., et al. (2010) Anintegrated network of androgen re- ceptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell, 17, 443-454. doi:10.1016/j.ccr.2010.03.018
[48] Zwick, E., Bange, J. and Ullrich, A. (2001) Receptor tyrosine kinase signalling as a target for cancer intervenetion strategies. Endocrine-Related Cancer, 8, 161-173. doi:10.1677/erc.0.0080161
[49] Pawson, T. (1995) Protein modules and signalling networks. Nature, 373, 573-580. doi:10.1038/373573a0
[50] Bublil, E.M. and Yarden, Y. (2007) The EGF receptor family: Spearheading a merger of signaling and therapeutics. Current Opinion in Cell Biology, 19, 124-134.
[51] Johnson, L.N. (2009) Protein kinase inhibitors: Contributions from structure to clinical compounds. Quarterly Reviews of Biophysics, 42, 1-40. doi:10.1017/S0033583508004745
[52] Robinson, D.R., Wu, Y.M. and Lin, S.F. (2000) The protein tyrosine kinase family of the human genome. Oncogene, 19, 5548-5557.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.