[1]
|
Rodriguez-Oroz, M.C., et al. (2009) Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. The Lancet Neurology, 8, 1128- 1139. doi:10.1016/S1474-4422(09)70293-5
|
[2]
|
Adams, J.D., Jr., Chang, M.L. and Klaidman, L. (2001) Parkinson’s disease—Redox mechanisms. Current Medicinal Chemistry, 8, 809-814.
doi:10.2174/0929867013372995
|
[3]
|
Jenner, P. (2003) Oxidative stress in Parkinson’s disease. Annals of Neurology, 53, S26-36; discussion S36-38.
|
[4]
|
Harman, D. (2006) Free radical theory of aging: An update: Increasing the functional life span. Annals of the New York Academy of Sciences, 1067, 10-21.
doi:10.1196/annals.1354.003
|
[5]
|
Connor, B. and Dragunow, M. (1998) The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Research Reviews, 27, 1-39.
doi:10.1016/S0165-0173(98)00004-6
|
[6]
|
Grothe, C. and Timmer, M. (2007) The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Research Reviews, 54, 80-91.
doi:10.1016/j.brainresrev.2006.12.001
|
[7]
|
Lin, L.F., et al. (1993) GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130-1132. doi:10.1126/science.8493557
|
[8]
|
Andereggen, L., et al. (2009) Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson’s disease. Brain Research, 1276, 39-49.
doi:10.1016/j.brainres.2009.04.021
|
[9]
|
Hadjiconstantinou, M., et al. (1991) Epidermal growth factor enhances striatal dopaminergic parameters in the 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse. Journal of Neurochemistry, 57, 479-482.
doi:10.1111/j.1471-4159.1991.tb03776.x
|
[10]
|
Hyman, C., et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350, 230-232. doi:10.1038/350230a0
|
[11]
|
Lindholm, P., et al. (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature, 448, 73-77. doi:10.1038/nature05957
|
[12]
|
Petrova, P., et al. (2003) MANF: A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. Journal of Molecular Neuroscience, 20, 173-188. doi:10.1385/JMN:20:2:173
|
[13]
|
Mogi, M., et al. (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neuroscience Letters, 270, 45-48. doi:10.1016/S0304-3940(99)00463-2
|
[14]
|
Howells, D.W., et al. (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Experimental Neurology, 166, 127-135.
doi:10.1006/exnr.2000.7483
|
[15]
|
Nagatsu, T., et al. (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. Journal of Neural Transmission Supplementa, 60, 277-290.
|
[16]
|
Parain, K., et al. (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport, 10, 557-561.
doi:10.1097/00001756-199902250-00021
|
[17]
|
Tooyama, I., et al. (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson's disease. Brain Research, 656, 165-168. doi:10.1016/0006-8993(94)91378-1
|
[18]
|
Choi, J.M., et al. (2011) Analysis of mutations and the association between polymorphisms in the cerebral dopa- mine neurotrophic factor (CDNF) gene and Parkinson disease. Neuroscience Letters, 493, 97-101.
doi:10.1016/j.neulet.2011.02.013
|
[19]
|
Chen, L., et al. (2011) The 712A/G polymorphism of Brain-derived neurotrophic factor is associated with Parkinson’s disease but not major depressive disorder in a Chinese han population. Biochemical and Biophysical Research Communications, 408, 318-321.
doi:10.1016/j.bbrc.2011.04.030
|
[20]
|
Wang, G., et al. (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. The American Journal of Human Genetics, 82, 283-289.
doi:10.1016/j.ajhg.2007.09.021
|
[21]
|
Mizuta, I., et al. (2008) Calbindin 1, fibroblast growth factor 20, and alpha-synuclein in sporadic Parkinson’s disease. Human Genetics, 124, 89-94.
doi:10.1007/s00439-008-0525-5
|
[22]
|
Krejci, P., et al. (2009) Molecular pathology of the fibroblast growth factor family. Human Mutation, 30, 1245-1255. doi:10.1002/humu.21067
|
[23]
|
Mason, I. (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nature Reviews Neuroscience, 8, 583-596.
doi:10.1038/nrn2189
|
[24]
|
Mayer, E., et al. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—I. Effects in vitro. Neuroscience, 56, 379-388. doi:10.1016/0306-4522(93)90339-H
|
[25]
|
Li, A., et al. (2006) Apomorphine-induced activation of dopamine receptors modulates FGF-2 expression in astrocytic cultures and promotes survival of dopaminergic neurons. The FASEB Journal, 20, 1263-1265.
doi:10.1096/fj.05-5510fje
|
[26]
|
Giacobini, M.M., et al. (1993) Fibroblast growth factors enhance dopamine fiber formation from nigral grafts. Brain Research Developmental Brain Research, 75, 65- 73. doi:10.1016/0165-3806(93)90066-J
|
[27]
|
Date, I., et al. (1993) Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Research, 621, 150-154.
doi:10.1016/0006-8993(93)90312-B
|
[28]
|
Otto, D. and Unsicker, K. (1993) FGF-2-mediated pro- tection of cultured mesencephalic dopaminergic neurons against MPTP and MPP+: Specificity and impact of culture conditions, non-dopaminergic neurons, and astroglial cells. Journal of Neuroscience Research, 34, 382-393.
doi:10.1002/jnr.490340403
|
[29]
|
Zawada, W.M., et al. (1996) Growth factors rescue em- bryonic dopamine neurons from programmed cell death. Experimental Neurology, 140, 60-67.
doi:10.1006/exnr.1996.0115
|
[30]
|
Peng, J., et al. (2008) Fibroblast growth factor 2 enhances striatal and nigral neurogenesis in the acute 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neuroscience, 153, 664-670.
doi:10.1016/j.neuroscience.2008.02.063
|
[31]
|
Casper, D. and Blum, M. (1995) Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. Journal of Neurochemistry, 65, 1016-1026.
doi:10.1046/j.1471-4159.1995.65031016.x
|
[32]
|
Hsuan, S.L., Klintworth, H.M. and Xia, Z. (2006) Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways. Journal of Neuroscience, 26, 4481- 4491. doi:10.1523/JNEUROSCI.4922-05.2006
|
[33]
|
Mayer, E., Fawcett, J.W. and Dunnett, S.B. (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons—II. Effects on nigral transplants in vivo. Neuroscience, 56, 389-398.
doi:10.1016/0306-4522(93)90340-L
|
[34]
|
Timmer, M., et al. (2004) Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Experimental Neurology, 187, 118-136. doi:10.1016/j.expneurol.2004.01.013
|
[35]
|
Murase, S. and McKay, R.D. (2006) A specific survival response in dopamine neurons at most risk in Parkinson’s disease. Journal of Neuroscience, 26, 9750-9760.
doi:10.1523/JNEUROSCI.2745-06.2006
|
[36]
|
Timmer, M., et al. (2007) Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. Journal of Neuroscience, 27, 459-471. doi:10.1523/JNEUROSCI.4493-06.2007
|
[37]
|
Klejbor, I., et al. (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons—inhibition results in a schizophrenia-like syn- drome in transgenic mice. Journal of Neurochemistry, 97, 1243-1258. doi:10.1111/j.1471-4159.2006.03754.x
|
[38]
|
Moller, A., (1992) Mean volume of pigmented neurons in the substantia nigra in Parkinson’s disease. Acta Neurolpgica Scandinavica Supplementum, 137, 37-39.
|
[39]
|
Ma, S.Y., et al. (1996) A quantitative morphometrical study of neuron degeneration in the substantia nigra in Parkinson’s disease. Journal of the Neurological Sciemces, 140, 40-45. doi:10.1016/0022-510X(96)00069-X
|
[40]
|
Klejbor, I., et al. (2009) Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis. Schizophrenia Research, 113, 308-321. doi:10.1016/j.schres.2009.06.006
|
[41]
|
Kucinski, A., et al. (2012) alpha7 neuronal nicotinic receptor agonist (TC-7020) reverses increased striatal dopamine release during acoustic PPI testing in a trans- genic mouse model of schizophrenia. Schizophrenia Research, 136, 82-87. doi:10.1016/j.schres.2012.01.005
|
[42]
|
Jenner, P. (2008) Molecular mechanisms of L-DOPA- induced dyskinesia. Nature Reviews Neuroscience, 9, 665-677. doi:10.1038/nrn2471
|
[43]
|
Linazasoro, G. (2005) New ideas on the origin of L- dopa-induced dyskinesias: Age, genes and neural plasticity. Trends in Pharmacological Sciences, 26, 391-397.
doi:10.1016/j.tips.2005.06.007
|
[44]
|
Grace, A.A. (2008) Physiology of the normal and dopamine-depleted basal ganglia: Insights into levodopa pharma- cotherapy. Movement Disorders, 23, S560-S569.
doi:10.1002/mds.22020
|
[45]
|
Quik, M., et al. (2010) Chronic nicotine treatment increases nAChRs and microglial expression in monkey substantia nigra after nigrostriatal damage. Journal of Molecular Neuroscience, 40, 105-113.
doi:10.1007/s12031-009-9265-9
|
[46]
|
Gotti, C., et al. (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: Primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. The Journal of Neurosciemce, 30, 5311- 5325. doi:10.1523/JNEUROSCI.5095-09.2010
|
[47]
|
Le Novere, N., et al. (1999) Involvement of alpha 6 nicotinic receptor subunit in nicotine-elicited locomotion, demonstrated by in vivo antisense oligonucleotide infusion. Neuroreport, 10, 2497-2501.
doi:10.1097/00001756-199908200-00012
|
[48]
|
Zhou, F.M., Liang, Y. and Dani, J.A. (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nature Neuroscience, 4, 1224-1229.
doi:10.1038/nn769
|
[49]
|
Dani, J.A. and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699-729.
doi:10.1146/annurev.pharmtox.47.120505.105214
|
[50]
|
Quik, M., et al. (2004) Loss of alpha-conotoxinMII- and A85380-sensitive nicotinic receptors in Parkinson’s disease striatum. Journal of Neurochemistry, 88, 668-679.
doi:10.1111/j.1471-4159.2004.02177.x
|
[51]
|
Wonnacott, S. (1997) Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20, 92-98.
doi:10.1016/S0166-2236(96)10073-4
|
[52]
|
Exley, R. and Cragg, S.J. (2008) Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. British Journal of Pharmacology, 153, S283-S297.
doi:10.1038/sj.bjp.0707510
|
[53]
|
Zhou, F.M., Wilson, C.J. and Dani, J.A. (2002) Cholinergic interneuron characteristics and nicotinic properties in the striatum. Journal of Neurobiology, 53, 590-605.
doi:10.1002/neu.10150
|
[54]
|
Maskos, U. (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: Relevance to drugs of abuse and pathology. British Journal of Pharmacology, 153, S438- S445. doi:10.1038/bjp.2008.5
|
[55]
|
Itti, E., et al. (2009) Dopamine transporter imaging under high-dose transdermal nicotine therapy in Parkinson’s disease: An observational study. Nuclear Medicine Communication, 30, 513-518.
|
[56]
|
Villafane, G., et al. (2007) Chronic high dose transdermal nicotine in Parkinson’s disease: An open trial. European Journal of Neurology, 14, 1313-1316.
doi:10.1111/j.1468-1331.2007.01949.x
|
[57]
|
Meshul, C.K., et al. (2002) Nicotine alters striatal glutamate function and decreases the apomorphine- induced contralateral rotations in 6-OHDA-lesioned rats. Experimental Neurology, 175, 257-274.
doi:10.1006/exnr.2002.7900
|
[58]
|
Huang, L.Z., et al. (2011) Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats. Neuropharmacology, 60, 861-868. doi:10.1016/j.neuropharm.2010.12.032
|
[59]
|
Quik, M., et al. (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Annals of Neurology, 62, 588-596. doi:10.1002/ana.21203
|
[60]
|
Quik, M., et al. (2009) Multiple roles for nicotine in Parkinson’s disease. Biochemical Pharmacology, 78, 677- 685. doi:10.1016/j.bcp.2009.05.003
|
[61]
|
Bialowas, J., et al. (1979) The relationship between catecholamine levels in the hypothalamus and amygdala under influence of glucose overloading in hungry and sated rats. Polish Journal of Pharmacology & Pharmacy, 31, 325-335.
|
[62]
|
Stachowiak, M.K., et al. (1984) Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Research, 291, 164- 167. doi:10.1016/0006-8993(84)90665-6
|
[63]
|
Ungerstedt, U. and Arbuthnott, G.W. (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy- dopamine lesions of the nigrostriatal dopamine system. Brain Research, 24, 485-493.
doi:10.1016/0006-8993(70)90187-3
|
[64]
|
Deumens, R., Blokland, A. and Prickaerts, J. (2002) Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology, 175, 303-317. doi:10.1006/exnr.2002.7891
|
[65]
|
Castaneda, E., et al. (2005) Assessment of recovery in the hemiparkinson rat: Drug-induced rotation is inadequate. Physiology & Behavior, 84, 525-535.
doi:10.1016/j.physbeh.2005.01.019
|
[66]
|
Iancu, R., et al. (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behaviournal Brain Research, 162, 1-10.
doi:10.1016/j.bbr.2005.02.023
|
[67]
|
Creese, I., Burt, D.R. and Snyder, S.H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science, 197, 596-598.
doi:10.1126/science.877576
|
[68]
|
Schwarting, R.K. and Huston, J. (1996) Unilateral 6- hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in Neurobiology, 49, 215-266.
doi:10.1016/S0301-0082(96)00015-9
|
[69]
|
Keller, R., et al. (1976) Liquid chromatographic analysis of catecholamines routine assay for regional brain mapping. Life Sciences, 19, 995-1003.
doi:10.1016/0024-3205(76)90290-3
|
[70]
|
Zhang, W.Q., et al. (1988) Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage. Brain Research, 461, 335-342.
doi:10.1016/0006-8993(88)90264-8
|
[71]
|
Rozas, G., Guerra, M.J. and Labandeira-Garcia, J.L. (1997) An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Research Protocols, 2, 75-84. doi:10.1016/S1385-299X(97)00034-2
|
[72]
|
Lundblad, M., et al. (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 16, 110-123.
doi:10.1016/j.nbd.2004.01.007
|
[73]
|
Jackson, D., et al. (1988) Inhibition of striatal acetylcholine release by serotonin and dopamine after the intracerebral administration of 6-hydroxydopamine to neonatal rats. Brain Research, 457, 267-273.
doi:10.1016/0006-8993(88)90695-6
|
[74]
|
Polymeropoulos, M.H., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045-2047.
doi:10.1126/science.276.5321.2045
|
[75]
|
Zimprich, A., et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601-607.
doi:10.1016/j.neuron.2004.11.005
|
[76]
|
Valente, E.M., et al. (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158-1160. doi:10.1126/science.1096284
|
[77]
|
Bonifati, V., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkin- sonism. Science, 299, 256-259.
doi:10.1126/science.1077209
|
[78]
|
Stachowiak, M.K., Maher, P.A. and Stachowiak, E.K. (2007) Integrative nuclear signaling in cell development— A role for FGF receptor-1. DNA and Cell Biology, 26, 811-826. doi:10.1089/dna.2007.0664
|
[79]
|
Fang, X., et al. (2005) Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: A novel mechanism of gene regulation. The Journal of Biological Chemistry, 280, 28451-28462.
doi:10.1074/jbc.M504400200
|
[80]
|
Maher, P.A. (1996) Nuclear translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. The Journal of Cell Biology, 134, 529-536.
doi:10.1083/jcb.134.2.529
|
[81]
|
Stachowiak, M.K., et al. (1996) Nuclear accumulation of fibroblast growth factor receptors is regulated by multiple signals in adrenal medullary cells. Molecular Biology of the Cell, 7, 1299-1317.
|
[82]
|
Reilly, J.F. and Maher, P.A. (2001) Importin betamediated nuclear import of fibroblast growth factor receptor: Role in cell proliferation. The Journal of Cell Biology, 152, 1307-1312. doi:10.1083/jcb.152.6.1307
|
[83]
|
Myers, J.M., et al. (2003) Nuclear trafficking of FGFR1: A role for the transmembrane domain. Journal of Cellular Biochemistry, 88, 1273-1291. doi:10.1002/jcb.10476
|
[84]
|
Dunham-Ems, S.M., et al. (2009) Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Molecular Biology of the Cell, 20, 2401-2412. doi:10.1091/mbc.E08-06-0600
|
[85]
|
van der Walt, J.M., et al. (2004) Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. The American Journal of Human Genetics, 74, 1121-1127. doi:10.1086/421052
|
[86]
|
Ohmachi, S., et al. (2003) Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. Journal of Neuroscience Research, 72, 436-443.
doi:10.1002/jnr.10592
|
[87]
|
Stachowiak, E.K., et al. (2003) cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). Journal of Neurochemistry, 84, 1296-1312.
doi:10.1046/j.1471-4159.2003.01624.x
|
[88]
|
Corso, T.D., et al. (2005) Transfection of tyrosine kinase deleted FGF receptor-1 into rat brain substantia nigra reduces the number of tyrosine hydroxylase expressing neurons and decreases concentration levels of striatal dopamine. Molecular Brain Research, 139, 361-366.
doi:10.1016/j.molbrainres.2005.05.032
|
[89]
|
Champtiaux, N., et al. (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. Journal of Neuroscience, 23, 7820-7829.
|
[90]
|
Salminen, O., et al. (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Molecular Pharmacology, 65, 1526-1535.
doi:10.1124/mol.65.6.1526
|
[91]
|
Grady, S., et al. (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synap- tosomes prepared from mouse striatum. Journal of Neurochemistry, 59, 848-856.
doi:10.1111/j.1471-4159.1992.tb08322.x
|
[92]
|
Azam, L., et al. (2005) Alpha-conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. The Journal of Biological Chemistry, 280, 80-87.
|
[93]
|
Marshall, D.L., Redfern, P.H. and Wonnacott, S. (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo micro- dialysis: Comparison of naive and chronic nicotinetreated rats. Journal of Neurochemistry, 68, 1511-1519.
doi:10.1046/j.1471-4159.1997.68041511.x
|
[94]
|
Pisani, A., et al. (2003) Targeting striatal cholinergic interneurons in Parkinson’s disease: Focus on metabotropic glutamate receptors. Neuropharmacology, 45, 45-56.
doi:10.1016/S0028-3908(03)00137-0
|
[95]
|
Sharma, G. and Vijayaraghavan, S. (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron, 38, 929-939.
doi:10.1016/S0896-6273(03)00322-2
|
[96]
|
Lu, Y., et al. (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. Journal of Pharmacology and Experimental Therapeutics, 287, 648-657.
|
[97]
|
Grady, S.R., et al. (2001) Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nAChR than dopamine release from striatum. Journal of Neurochemistry, 76, 258-268. doi:10.1046/j.1471-4159.2001.00019.x
|
[98]
|
Clarke, P.B. and Reuben, M. (1996) Release of [3H]- noradrenaline from rat hippocampal synaptosomes by nicotine: Mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. British Journal of Pharmacology, 117, 595-606.
doi:10.1111/j.1476-5381.1996.tb15232.x
|
[99]
|
Kelton, M.C., et al. (2000) The effects of nicotine on Parkinson's disease. Brain and Cognition, 43, 274-282.
|
[100]
|
Lemay, S., et al. (2004) Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Progress in Neuro-Psychopharma- cology & Biological Psychiatry, 28, 31-39.
doi:10.1016/S0278-5846(03)00172-6
|
[101]
|
Vieregge, A., et al. (2001) Transdermal nicotine in PD: A randomized, double-blind, placebo-controlled study. Neu- rology, 57, 1032-1035. doi:10.1212/WNL.57.6.1032
|
[102]
|
Clemens, P., et al. (1995) The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology (Berl), 117, 253-256.
doi:10.1007/BF02245195
|
[103]
|
Gregorio, M.L., et al. (2009) Nicotine induces sensitization of turning behavior in 6-hydroxydopamine lesioned rats. Neurotoxicity Research, 15, 359-366.
doi:10.1007/s12640-009-9041-1
|
[104]
|
Janhunen, S., Tuominen, R.K. and Ahtee, L. (2005) Comparison of the effects of nicotine and epibatidine given in combination with nomifensine on rotational behaviour in rats. Neuroscience Letters, 381, 314-319.
doi:10.1016/j.neulet.2005.02.038
|
[105]
|
Huang, L.Z., et al. (2009) Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. Journal of Neurochemistry, 109, 826-837. doi:10.1111/j.1471-4159.2009.06011.x
|
[106]
|
Moffett, J., Kratz, E. and Stachowiak, M.K. (1998) Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. Molecular Brain Research, 55, 293-305. doi:10.1016/S0169-328X(98)00010-2
|
[107]
|
Belluardo, N., et al. (2000) Neurotrophic effects of central nicotinic receptor activation. Journal of Neural Transmission Supplementa, 60, 227-245.
|
[108]
|
Mudo, G., et al. (2007) Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience, 145, 470-483.
doi:10.1016/j.neuroscience.2006.12.012
|
[109]
|
Morelli, M., et al. (1993) L-dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain Research, 623, 334-336. doi:10.1016/0006-8993(93)91449-3
|
[110]
|
Bunney, B.S., Aghajanian, G.K. and Roth, R.H. (1973) Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biology, 245, 123-125.
|
[111]
|
Grace, A.A. and Bunney, B.S. (1984) The control of firing pattern in nigral dopamine neurons: Single spike firing. Journal of Neuroscience, 4, 2866-2876.
|
[112]
|
Winkler, C., et al. (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10, 165- 186. doi:10.1006/nbdi.2002.0499
|