Adsorptive Removal of Antimony (III) Using Modified Montmorillonite: A Study on Sorption Kinetics


The adsorptive removal of antimony (III) has been successfully obtained on montmorillonite (MMT) and modified MMT from synthetic solution. The adsorption behavior of the modified and unmodified MMT has been investigated as a function of initial concentration of metal ion in the solution, pH of the solution and contact time using a batch extraction process. The optimized process can be applied for the adsorption, detection and estimation of antimony from 0.006 μg/ml (6.0 ppb) to 100.00 μg/ml (100.0 ppm) in aqueous solution. It has been observed that almost 99% of antimony (III) can be successfully extracted from a solution containing 100 μg/ml of the metal ion at pH 6.0 at 25?C ± 2?C. The investigation of the kinetics of sorption of antimony (III) on MMT/modified MMTshows intraparticle diffusion to be the rate limiting step during the initial stages of adsorption followed by chemisorption.

Share and Cite:

A. Anjum and M. Datta, "Adsorptive Removal of Antimony (III) Using Modified Montmorillonite: A Study on Sorption Kinetics," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 2 No. 3, 2012, pp. 167-175. doi: 10.4236/jasmi.2012.23027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. G. Elinder and L. Friberg, “Antimony,” In: L. Friberg, G. F. Nordberg, V. B. Vouk, Eds., Handbook on the Toxicology of Metals, Vol. II, Speci?c Metals, Elsevier, Amsterdam, 1986, pp. 26-42.
[2] T. D. Luckey, B. Venugopal, D. Hutcheson, F. Coulston and F. Korte, “Environmental Quality and Safety, Supplement Vol. I,” Georg Thieme, Stuttgart, 1975.
[3] T. Norseth, I. Martinsen, T. W. Clarkson, L. Friberg, G. F. Nordberg and P. R. Sager, “Biological Monitoring of Toxic Metals,” Plenum, New York, 1988, pp. 337-367. doi:10.1007/978-1-4613-0961-1_14
[4] S. C. Wilson, P. V. Lockwood, P. M. Ashley and M. Tighe, “The Chemistry and Behaviour of Antimony in the Soil Environment with Comparisons to Arsenic: A Critical Review,” Environmental Pollution, Vol. 158, No. 5, 2010, pp. 1169-1181. doi:10.1016/j.envpol.2009.10.045
[5] M. Krachler, W. Shotyk and H. Emons, “Digestion Procedures for the Determination of Antimony and Arsenic in Small Amounts of Peat Samples by Hydride Generation-Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 432, No. 2, 2001, pp. 307-314. doi:10.1016/S0003-2670(00)01364-7
[6] R. S. Braman and C. C. Foreback, “*,” Environment Science, Vol. 182, No. , 1973, pp. 1247-1249.
[7] W. L. Lindsay, “Chemical Equilibria in Soils,” Wiley, New York, 1979.
[8] T. Gebel, “Arsenic and Antimony: Comparative Approach on Mechanistic Toxicology,” Chemico-Biological Interactions, Vol. 107, No. 3, 1997, pp. 131-144. doi:10.1016/S0009-2797(97)00087-2
[9] US Geological Survey, “Mineral Commodity Summaries,” US Geological Survey, Washington, 2009.
[10] R. C. Ragaini, H. R. Ralston and N. Roberts, “Environmental Trace Metal Contamination in Kellogg, Idaho, near a Lead Smelting Complex,” Environmental Science and Technology, Vol. 11, No. 8, 11, 1977, pp. 773-781. doi:10.1021/es60131a004
[11] R. G. McLaren, R. Naidu, J. Smith and K. G. Tiller, “Fractionation and Distribution of Arsenic in Soils Contaminated by Cattle Dip,” Journal of Environmental Quality, Vol. 27, No. 2, 1998, pp. 348-354. doi:10.2134/jeq1998.00472425002700020015x
[12] M. Filella, N. Belzile and Y. Chen, “Antimony in the Environment: A Review Focused on Natural Waters: I. Occurrence,” Earth Science Reviews, Vol. 57, No. 1-2, 2002, pp. 125-176. doi:10.1016/S0012-8252(01)00070-8
[13] N. J. Wilson, D. Craw and K. Hunter, “Antimony Distribution and Environmental Mobility at an Historic Antimony Smelter Site, New Zealand,” Environmental Pollution, Vol. 129, No. 2, 2004, pp. 257-266. doi:10.1016/j.envpol.2003.10.014
[14] F. Douay, C. Pruvot, H. Roussel, H. Ciesielski, H. Fourrier, N. Proix and C. Waterlot, “Contamination of Urban Soils in an Area of Northern France Polluted by Dust Emissions of Two Smelters, ” Water, Air and Soil Pollution, Vol. 188, No. 1-4, 2008, pp. 247-260. doi:10.1007/s11270-007-9541-7
[15] K. Telford, W. Maher, F. Krikowa, S. Foster, M. J. Ellwood, P. M. Ashley, P. V. Lockwood and S. C. Wilson, “Bioaccumulation of Antimony and Arsenic in a Highly Contaminated Stream Adjacent to the Hillgrove Mine, NSW, Australia,” Environmental Chemistry, Vol. 6, 2009, pp. 133-143. doi:10.1071/EN08097
[16] D. Lerda, “Sister-Chromatid Exchange (SCE) among Individuals Chronically Exposed to Arsenic in Drinking Water,” Mutation Research, Vol. 312, No. 2, 1994, pp. 111-120. doi:10.1016/0165-1161(94)90015-9
[17] N. J. Wilson, D. Craw and K. Hunter, “Antimony Distribution and Environmental Mobility at an Historic Antimony Smelter Site, New Zealand,” Environmental Pollution, Vol. 129, No. 2, 2004, pp. 257-266. doi:10.1016/j.envpol.2003.10.014
[18] W. P. Tseng, “,” Environmental Health Perspectives, Vol. 19, “*,” 1977, pp. 109-119. doi:10.1289/ehp.7719109
[19] M. N. Bates, A. H. Smith and C. H. Rich, “*,” American Journal of Epidemiology, Vol. 135, “*,” 1992, pp. 462-476.
[20] C. J. Chen, T. L. Kuo and M. M. Wu, “Arsenic and Cancers,” The Lancet, Vol. 331, No. 8582, 1988, pp. 414-415. doi:10.1016/S0140-6736(88)91207-X
[21] W. P. Tseng, H. M. Chu, S. W. How, J. M. Fong, C. S. Lin and S. Yeh, “Prevalence of Skin Cancer in an Endemic Area of Chronic Arsenicism in Taiwan,” Journal of the National Cancer Institute, Vol. 40, No. 3, 1968, pp. 453-463.
[22] E. A. Deliyanni, E. N. Peleka and K. A. Matis, “Effect of Cationic Surfactant on the Adsorption of Arsenites onto Akaganeite Nanocrystals,” Separation Science and Technology, Vol. 42, No. 5, 2007, pp. 993-1012. doi:10.1080/01496390701206306
[23] Z. Klika, H. Weissmannova, P. Capkova and M. Pospisil, “The Rhodamine B Intercalation of Montmorillonite,” Journal of Colloid and Interface Science, Vol. 275, No. 1, 2004, pp. 243-250. doi:10.1016/j.jcis.2004.02.040
[24] J. H. Xia, M. C. Hea and C. Y. Lina, “*,” Microchemical Journal, Vol. 97, No. 1, 2011, pp. 85-91.
[25] H. Khalaf, O. Bouras and V. Perrichon, “Synthesis and Characterization of Al-Pillared and Cationic Surfactant Modified Al-Pillared Algerian Bentonite,” Microporous Materials, Vol. 8, No. 3-4, 1997, pp. 141-150. doi:10.1016/S0927-6513(96)00079-X
[26] O. Agrawal, G. Sunita and V. K. Gupta, “A Sensitive Colorimetric Method for the Determination of Arsenic in Environmental and Biological Samples,” Journal Chinese Chemical Society, Vol. 46, No. 4, 1999, pp. 641-645.
[27] A. Anjum, P. Lokeswari, M. Kaur and M. Datta, “Removal of As (III) from Aqueous Solutions Using Montmorillonite,” Journal of Analytical Sciences, Methods and Instrumentation, Vol. 1, No. 2, 2011, 25-30. doi:10.4236/jasmi.2011.12004
[28] B. Ersoy and M. ?elik, “Effect of Hydrocarbon Chain Length on Adsorption of Cationic Surfactants onto Clinoptilolite,” Clays Clay Minerals, Vol. 51, No. 2, 2003, pp. 172-180. doi:10.1346/CCMN.2003.0510207
[29] Y. Xi, et al., “Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption,” Applied Clay Science, Vol. 48, No. 1-2, 2010, pp. 92-96. doi:10.1016/j.clay.2009.11.047
[30] M. Berg, H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib and W. Giger, “Arsenic Contamination of Groundwater and Drinking Water in Vietnam:? A Human Health Threat,” Environmental Science and Technology, Vol. 35, No. 13, 2001, pp. 2621-2626. doi:10.1021/es010027y
[31] S. S. Tahir and N. Rauf, “Removal of Acationicdye from Aqueoussolutions by Adsorption onto Bentoniteclay,” Chemosphere, Vol. 63, No. 11, 2006, pp. 1842-1848.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.