Effect of Chytriomyces hyalinus on Industrial Wastewater Pre-Treated with Electrocoagulations in a Continuous System


A strain of Chytriomyces hyalinus fungus was applied as a pretreatment on industrial wastewater pollutant using electrocoagulations column of aluminum electrodes in a continuous system. The parameters considered in this experiment include pH, conductivity, color, turbidity, COD (Chemical Oxygen Demand), BOD (Biochemical Oxygen Demand) nitrate, nitrite, and SB (sporangia biomass). Biological and electrocoagulations treatments had the next conditions: Chytriomyces hyalinus solutions 1:10, 60 min of biological treatment, 50 mL/min flow, constant ventilations, 15 min of electrocoagulations time and 3.4 A of electrical current. Color and turbidity values dropped with a 90% efficiency (2700 to170 Pt-Co; 120 to10 FAU, respectively), COD 68% (2100 to 672 mg/L), BOD5 70% (650 to 195 mg/L), nitrate showed an 86% (3.8 to 0.5 mg/L), finally nitrite with a 60% amount reduction (1.5 to 0.6 mg/L). For SB parameter, there was a value rising as same as the treatment time (r2 = 0.90) carrying out a y = 94.302e0.0356x model. These results reveal a positive outcome of Chytriomyces hyalinus on industrial wastewater pollutants pre-treated with aluminium electrocoagulations in a continuous system.

Share and Cite:

M. Tejocote-Pérez, P. Balderas-Hernández, C. Barrera-Díaz, G. Roa-Morales and V. Bárcena, "Effect of Chytriomyces hyalinus on Industrial Wastewater Pre-Treated with Electrocoagulations in a Continuous System," Natural Resources, Vol. 3 No. 3, 2012, pp. 118-125. doi: 10.4236/nr.2012.33016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Golubic, G. Radtke and T. Le, “Campion-Alsumard, Endolithic Fungi in Marine Ecosystems,” Trends in Mi- crobiology, Vol. 13, No. 5, 2005, pp. 229-234. doi:10.1016/j.tim.2005.03.007
[2] J. Sumathi and R. Chandralata, “Anaerobic Denitrifications in Fungi from the Coastal Marine Sediments off Goa, India,” Mycological Research, Vol. 113, No. 1, 2009, pp. 100-109. doi:10.1016/j.mycres.2008.08.009
[3] G. Hageskal, N. Lima and I. Skaar, “The Study of Fungi in Drinking Water,” Mycological Research, Vol. 113, No. 2, 2009, pp. 165-172. doi:10.1016/j.mycres.2008.10.002
[4] M. Barreto-Rodríguez, J. V. Souza, S. E. Silva, T. F. Silva and C. B. T. Pavia, “Combined Photocatalytic and Fungal Processes for the Treatment of Nitrocellulose Industry Wastewater,” Journal of Hazardous Materials, 161, No. 2-3, 2009, pp. 1569-1573. doi:10.1016/j.jhazmat.2008.05.012
[5] T. Dalsgaard, D. E. Canfield, J. Petersen, B. Thamdrup and J. Acu?a-González, “N2 Productions by the Anammox Reactions in the Anoxic Water Column of Golfo Dulce, Costa Rica,” Nature, 422, No. 6932, 2003, pp. 606-608. doi:10.1038/nature01526
[6] G. Buttiglieri, F. Malpei, E. Daverio, M. Melchiori, H. Nieman and J. Ligthart, “Denitrification of Drinking Water Sources by Advanced Biological Treatment Using a Membrane Bioreactor,” Desalination. Vol. 178, No. 1-3, 2005, pp. 211-218. doi:10.1016/j.desal.2004.11.038
[7] Y. T. Ahn, S. T. Kang, S. R. Chae, C. Y. Lee, B. U. Bae and H. S. Shin, “Simultaneous High-Strength Organic and Nitrogen Removal with Combined Anaerobic Upflow Bed Filter and Aerobic Membrane Bioreactor,” Desalination, Vol. 202, No. 1-3, 2007, pp. 114-121. doi:10.1016/j.desal.2005.12.046
[8] T. R. Thomsen, Y. Kong and P. H. Nielsen, “Ecophysiology of Abundant Denitrifying Bacteria In-Activated Sludge,” Microbiology Ecological, Vol. 60, No. 3, 2007, pp. 370-382. doi:10.1111/j.1574-6941.2007.00309.x
[9] K. Rajender, R. N. Bishnoi and K. G. Bishnoi, “Biosorp- tion of Chromium Cr (VI) from Aqueous Solutions and Electroplating Wastewater Using Fungal Biomass,” Chemical Engineering Journal, Vol. 135, No. 3, 2008, pp. 202-209.
[10] J. Bo, X. Q. Yan, Q. Yu and J. H. Van Leeuwen, “A Comprehensive Pilot Plant System for Fungal Biomass Protein Productions and Wastewater Reclamation,” Advances in Environmental Research, Vol. 6, No. 2, 2002, pp. 179-189. doi:10.1016/S1093-0191(01)00049-1
[11] A. Zahangir and A. Fakhru’l-Razi, “Enhanced Settlebility and Dewaterability of Fungal Treated Do-Mestic Wastewater Sludge by Liquid State Bioconversion Process,” Water Research, Vol. 37, No. 5, 2003, pp. 1118-1124. doi:10.1016/S0043-1354(02)00452-9
[12] Y. Z. Zhang, B. Jin, H. Z. Bai and Y. X. Wang, “Produc- tion of Fungal Biomass Protein Using Microfungi from Winery Wastewater Treatment,” Bioresource Technology, Vol. 99, No. 9, 2008, pp. 3871-3876. doi:10.1016/j.biortech.2006.10.047
[13] E. Liwarska-Bizukojc, “Application of Image Analysis Techniques in Activated Sludge Wastewater Treatment Processes,” Biotechnology Letters, Vol. 27, No. 19, 2005, pp. 1427-1433. doi:10.1007/s10529-005-1303-2
[14] D. K. Sharma, H. S. Saini, M. Singh, S. S. Chimni and B. S. Chadha, “Biological Treatment of Textile Dye Acid Violet-17 by Bacterial Consortium in an Up-Flow Immo- bilized Cell Bioreactor,” Letters in Applied Microbiology, Vol. 38, No. 5, 2004, pp. 345-350. doi:10.1111/j.1472-765X.2004.01500.x
[15] C. J. Van der Gast, A. S. Whiteley and I. P. Thompson, “Temporal Dynamics and Degradation Activity of a Bacterial Inoculum for Treating Waste Metal-Working Fluid,” Environmental Microbiology, Vol. 6, No. 3, 2004, pp. 254-263. doi:10.1111/j.1462-2920.2004.00566.x
[16] C. Kragelund, C. Levantesi, A. Borger, K. Thelen, D. Eikelboom, V. Tandoi, Y. Kong, J. Van der Waarde, J. Krooneman, S. Rossetti and T. R. ThomsenNielsen, “Identity, Abundance and Ecophysiology of Filamentous Chloroflexi Species Present in Activated Sludge Treatment Plants,” Microbiological Ecology, Vol. 59, No. 3, 2007, pp. 671-682. doi:10.1111/j.1574-6941.2006.00251.x
[17] S. Rossetti, M. Tomei, P. Nielsen and V. Tandoi, “Microthrix parvicella, a Filamentous Bacterium Causing Bulking and Foaming in Activated Sludge Sys-Tems: A Review of Current Knowledge,” Microbiology Review, Vol. 29, No. 1, 2005, pp. 49-64.
[18] V. L. Barbosa, S. D. Atkins, V. P. Barbosa, J. E. Bur-Gess and R. M Stuetz, “Characterization of Thiobacillus thioparus Isolated from an Activated Sludge Bio- reactor Used for Hydrogen Sulfide Treatment,” Journal of Applied Microbiology, Vol. 101, No. 6, 2006, pp. 1269-1281. doi:10.1111/j.1365-2672.2006.03032.x
[19] F. Fatone, D. Bolzonella, P. Battistoni and F. Cecchi, “Removal of Nutrients and Micropollutants Treating Low Loaded Wastewaters in a Membrane Bioreactor Operating the Automatic Alternate-Cycles Process,” Desalination, Vol. 183, No. 1-3, 2005, pp. 395-405. doi:10.1016/j.desal.2005.02.055
[20] J. D. Jang, J. P. Barford, A. Lindawati and R. Renneberg, “Application of Biochemical Oxygen Demand (BOD) Biosensor for Optimization of Biological Carbon and Nitrogen Removal from Synthetic Wastewater in a Sequencing Batch Reactor System,” Biosensor and Bioelectrode, Vol. 19, No. 8, 2004, pp. 805-812. doi:10.1016/j.bios.2003.08.009
[21] C. Della Rocca, V. Belgiorno and S. Meric, “Over-View of In-Situ Applicable Nitrate Removal Processes,” Desalination, Vol. 204, No. 1-3, 2007, pp. 46-62. doi:10.1016/j.desal.2006.04.023
[22] Y. H. Kim, E. D. Hwang, W. S. Shin, J. H. Choi, T. W. Ha and S. J. Choi, “Treatments of Stainless Steel Wastewater Containing a High Concentration of Nitrate Using Reverse Osmosis And Nanomembranes,” Desalination, Vol. 202, No. 1-3, 2007, pp. 286-292. doi:10.1016/j.desal.2005.12.066
[23] M. Milovanovic, “Water Quality Assesment and De-Termination of Pollution Sources along the Axios/Vardar River, Southeastern Europe,” Desalination, Vol. 213, No. 1-3, 2007, pp. 159-173. doi:10.1016/j.desal.2006.06.022
[24] M. Ricart, E. Guasch, M. Alberch, D. Berceló, C. Bon- nineau, A. Geiszinger, M. La Farré, J. Ferrer, F. Ricciardi, A. Romaní, S. Morín, L. Proia, L. Sala, D. Sureda and S. Sabater, “Triclosan Persistence through Wastewater Treated Plants and Its Potential Toxic Effects on Rever Biofilms,” Aquatic Toxicology, Vol. 100, No. 4, 2010, pp. 346-353. doi:10.1016/j.aquatox.2010.08.010
[25] P. Ca?izares, R. Paz, C. Sáez and M. A. Rodrigo, “Cost of the Electrochemical Oxidation of Wastewaters: A Comparison with Ozonations and Fenton Oxidation Proc- esses,” Journal of Environment Management, Vol. 90, No. 1, 2009, pp. 410-420. doi:10.1016/j.jenvman.2007.10.010
[26] K. V. Padoley, S. N. Mudliar, S. K. Banerjee, S. C. Deshmukh and R. A. Pandey, “Fenton Oxidation: A Pretreatment Option for Improved Biological Treatment of Pyridine and 3-Cyanopyridine Plant Wastewater,” Chemical Engineering Journal, Vol. 166, No. 1, 2011, pp. 1-9. doi:10.1016/j.cej.2010.06.041
[27] O. Amuda and I. Amoo, “Coagulation/Flocculation Process and Sludge 5 Conditioning in Beverage Industrial Wastewater Treatment,” Journal of Hazardous Materials, Vol. 141, No. 3, 2007, pp. 778-783. doi:10.1016/j.jhazmat.2006.07.044
[28] R. Braz, A. Pirra, M. Lucas and J. Peres, “Combinations of Long Term Aerated Storage and Chemical Coagulations/Flocculations to Winery Wastewater Treatment,” Desalinations, Vol. 263, No. 1-3, 2010, pp. 226-232. doi:10.1016/j.desal.2010.06.063
[29] C. Barrera-Díaz, G. Roa-Morales, L. Avila-Cordoba, T. Pavon-Silva and B. Bilyeu, “Electrochemical Treatment Applied to Food-Processing Wastewater Treatment,” Industrial Engineering Chemical Research, Vol. 45, No. 1, 2006, pp. 34-38. doi:10.1021/ie050594k
[30] M. Panizza and G. Cerisola, “Elechtrochemical Oxidation as a Final Treatment of Synthetic Tannery Wastewater,” Environment Science Technology, Vol. 38, No. 20, 2004, pp. 5470-5475. doi:10.1021/es049730n
[31] D. Rajkumar and K. Palanivelu, “Electrochemical Degradations of Cresols for Wastewater Treatment,” Industrial Engineering Chemical Research, Vol. 42, No. 9, 2003, pp. 1833-1839. doi:10.1021/ie020759e
[32] G. Roa-Morales, E. Campos-Medina, E. Aguilera-Cotero, B. Bilyeu and C. Barrera, “Aluminium Electrocuagulation with Peroxide Applied to Wastewater from Pasta and Cookie Processing,” Separations and Purifications Technology, Vol. 54, No. 1, 2006. pp. 124-129. doi:10.1016/j.seppur.2006.08.025
[33] M. Tejocote-Pérez, P. Balderas-Hernández, C. E Barrera-Díaz, G. Morales and R. Natividad-Rangel, “Treatment of Industrial Effluents by a Continuous System: Electroco-agulation-Activated Sludge,” Bioresource Technology, Vol. 101, No. 20, 2010, pp. 7761-7766. doi:10.1016/j.biortech.2010.05.027
[34] D. W. Graham and V. H. Smith, “Designed Ecosystem Services: Application of Ecological Principles in Wastewater Treatment Engineering,” Fronts in Ecology and the Environment, Vol. 2, No. 4, 2004, pp. 199-206. doi:10.1890/1540-9295(2004)002[0199:DESAOE]2.0.CO;2
[35] N. N. Sang, S. Soda, K. Sei and M. Ike, “Effect of Aereation on Stabilization of Organic Solid Waste and Microbial Populations Dynamics in Lab-Scale Landfill Bioreactors,” Journal of Bioscience and Bioengineering, Vol. 106, No. 5, 2008, pp. 425-432. doi:10.1263/jbb.106.425
[36] NMX-AA-028-SCFI, “Water Analysis-Determination for Biochemical Oxygen Demand (BOD5) in Natural, Waste- waters and Wastewaters Treated-Test Method,” Diario Oficial de la Federación, México, 2005.
[37] American Public Health Association, American Water Works Association, Water Environment Federation, “Standard Methods for the Examination of Water and Wastewater,” Washington DC, Denver, Alexandria, 2005.
[38] T. T. More, S. Yan, R. D. Tyagi and R. Y. Surampalli, “Potential Use of Filamentous Fungi for Wastewater Sludge Treatment,” Bioresource Technology, Vol. 101, No. 20, 2010, pp. 7691-7700. doi:10.1016/j.biortech.2010.05.033
[39] M. V. Garcia, A. C. Monteiro, M. J. P. Szabo, N. Prette and G. H. Bechara, “Mechanism of infection and Colonization of Rhiphicephalus Sanguineus Eggs by Metarhizium anisopliae as Revealed by Scanning Electron Microscopy and Histopathology,” Brazilian Journal of Microbiology, Vol. 36, 2005, pp. 368-372. doi:10.1590/S1517-83822005000400012
[40] NMX-AA-030-SCFI, “Water Analysis-Determination for Chemical Oxygen Demand (COD) in Natural, Wastewa- ters and Wastewaters Treated-Test Method,” Diario Oficial de la Federación, México, 2001.
[41] NMX-AA-034-SCFI, “Water Analysis-Determination of Salts and Solids Dissolved in Natural, Wastewaters and Wastewaters Treated-Test Method,” Diario Oficial de la Federación, México, 2001.
[42] HACH, “Water Analysis Manual,” HACH Co., Loveland, 2008.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.