Design and Multicriteria Optimization of a Two-Stage Reactive Extrusion Process for the Synthesis of Thermoplastic Polyurethanes


This paper presents the implementation of two multicriteria optimization methods based on different approaches, namely, Rough Set Method (RSM) and Net Flow Method (NFM), to the manufacture by reactive extrusion of linear thermoplastic polyurethanes (TPUs), appropriate for medical applications. A preliminary study allowed determining the process operating conditions for which the polymerization time and the average residence time of the reactants in the extruder are of the same order of magnitude. Prior to the optimization, a neural network model able to predict with acceptable accuracy the effect of the operating conditions on the output process variables, was constructed and validated. This model was then used to determine, using Pareto’s concept, a set of non-dominated solutions constituting Pareto’s domain. These solutions were then ranked according to the preferences of a decision maker using NFM and RSM. This allowed providing the 10% highest ranked solutions of Pareto’s domain and proposing a set of optimal operating conditions for the production, with the lowest energy consumption, of TPUs with targeted properties and high purity. Experimental validation runs carried out under similar operating conditions gave rise to criteria values confirming the su- perior performance of NFM, without rejecting, at the same time, the values obtained using RSM.

Share and Cite:

S. Hoppe, D. Meimaroglou, M. Camargo, C. Fonteix and F. Pla, "Design and Multicriteria Optimization of a Two-Stage Reactive Extrusion Process for the Synthesis of Thermoplastic Polyurethanes," Engineering, Vol. 4 No. 9, 2012, pp. 497-514. doi: 10.4236/eng.2012.49065.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Król, “Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers,” Progress in Materials Science, Vol. 52, No. 6, 2007, pp. 915-1015. doi:10.1016/j.pmatsci.2006.11.001
[2] J. M. Raqueza, M. Deléglisea, M. F. Lacrampea and P. Krawczaka, “Thermosetting (Bio)materials Derived from Renewable Resources: A Critical Review,” Progress in Polymer Science, Vol. 35, No. 4, 2010, pp. 487-509. doi:10.1016/j.progpolymsci.2010.01.001
[3] P. F. Brains, “Polyurethanes Technology,” John Wiley & Sons, Hoboken, 1969.
[4] C. Hepburn, “Polyurethane Elastomers,” Elsevier Science, London, 1992. doi:10.1007/978-94-011-2924-4
[5] Z. Wirpsza, “Polyurethane, Chemistry, Technology and Applications,” Ellis Harwood, Chichester, 1993.
[6] J. Dodge, “Polyurethane Chemistry,” 2nd Edition, Bayer Corp., Pittsburgh, 1999.
[7] D. K. Chattopadhyay and K. V. Raju, “Structural Engineering of Polyurethane Coatings for High Performance Applications,” Progress in Polymer Science, Vol. 32, No. 3, 2007, pp. 352-418. doi:10.1016/j.progpolymsci.2006.05.003
[8] R. Narayan, D. K. Chattopadhyay, B. Sreedhar, K. V. Raju, N. N. Mallikarjuna and T. M. Aminabhavi, “Synthesis and Characterization of Cross-Linked Polyurethane Dispersions Based on Hydroxylated Polyesters,” Journal of Applied Polymer Science, Vol. 99, No. 1, 2006, pp. 368-380. doi:10.1002/app.22430
[9] A. A. Caraculacu and S. Coseri, “Isocyanates in Polyaddition Processes, Structure and Reaction Mechanisms,” Progress in Polymer Science, Vol. 26, No. 5, 2001, pp. 799-851. doi:10.1016/S0079-6700(00)00033-2
[10] K. M. Zia, H. N. Bhatti and I. A. Bhatti, “Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review,” Reactive and Functional Polymers, Vol. 67, No. 8, 2007, pp. 675-692. doi:10.1016/j.reactfunctpolym.2007.05.004
[11] P. A. Gunatillake, D. J. Martin, G. F. Meijs, S. J. McCarthy and R. Adhikari, “Designing Biostable Polyurethane Elastomers for Biomedical Implants,” Australian Journal of Chemistry, Vol. 56, No. 6, 2003, pp. 545-557. doi:10.1071/CH02168
[12] J. H. Park, K. D. Park and Y. H. Bae, “PDMS Based Polyurethane Grafted with MPEG: Synthesis, Characterization and Platelet Adhesion Property,” Biomaterials, Vol. 20, No. 10, 1999, pp. 943-953. doi:10.1016/S0142-9612(98)00250-6
[13] L. Poussard, F. Burel, J. P. Couvercelle, Y. Merhi, M. Tabrizian and C. Bunel, “Haemocompatibility of New Ionic Polyurethanes. Influence of Carboxylic Group Insertion Modes,” Biomaterials, Vol. 25, No. 17, 2004, pp. 3473-3483. doi:10.1016/j.biomaterials.2003.10.069
[14] J. H. Wang and C. H. Yao, “Development of Biodegradable Polyester Urethane Membranes with Different Surface Morphologies for the Culture of Osteoblasts,” Journal of Biomedical Materials Research, Vol. 51, No. 4, 2000, pp. 761-769. doi:10.1002/1097-4636(20000915)51:4<761::AID-JBM26>3.0.CO;2-2
[15] K. Gorna and S. Gogolewski, “In Vitro Degradation of Novel Medical Biodegradable Aliphatic Polyurethanes Based on Epsilon-Caprolactone and Pluronics (R) with Various Hydrophilicities,” Polymer Degradation and Stability, Vol. 75, No. 1, 2002, pp. 113-122. doi:10.1016/S0141-3910(01)00210-5
[16] K. Gorna and S. Gogolewski, “Biodegradable Polyurethanes for Implants. II. In Vitro Degradation and Calcification of Materials from Poly(epsilon-caprolactone)-poly (ethylene oxide) Diols and Various Chain Extenders,” Journal of Biomedical Materials Research, Vol. 60, No. 4, 2002, pp. 592-606. doi:10.1002/jbm.10100
[17] R. M. Hensarling, J. G. Ruy, A. Hill and S. J. Moravek, “Twin Screw Extrusion: Formation of Thermoplastic Polyurethane through Reactive Extrusion,” American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, Vol. 49, No. 1, 2008, pp. 1163-1164.
[18] S. J. Moravek, J. S. Wiggins and R. F. Storey, “Reactive Extrusion of Methyl 2,6-Diisocyantocaproate-based Degradable Thermoplastic Polyurethanes,” American Chemical Society Polymer Preprints, Division of Polymer Chemistry, Vol. 49, No. 1, 2008, pp. 574-575.
[19] A. Lapprand, F. Méchin and J. P. Pascault, “Synthesis and Properties of Self-Crosslinkable Thermoplastic Polyurethanes,” Journal of Applied Polymer Science, Vol. 105, No. 1, 2007, pp. 99-113. doi:10.1002/app.26086
[20] J. P. Puaux, P. Cassagnau, G. Bozga and I. Nagy, “Modeling of Polyurethane Synthesis by Reactive Extrusion,” Chemical Engineering and Processing: Process Intensification, Vol. 45, No. 6, 2006, pp. 481-487. doi:10.1016/j.cep.2005.11.006
[21] A. Bouilloux, C. W. Makosco and T. Kotnour, “Urethane Polymerization in a Counterrotating Twin-Screw Extruder,” Industrial and Engineering Chemistry Research, Vol. 30, No. 11, 1991, pp. 2431-2436. doi:10.1021/ie00059a011
[22] M. E. Hyun and S. C. Kim,” A Study on the Reactive Extrusion Process of Polyurethane,” Polymer Engineering and Science, Vol. 28, No. 11, 1998, pp. 743-757. doi:10.1002/pen.760281107
[23] S. Dassin, M. Dumon, F. Mechin and J. P. Pascault, “Thermoplastic Polyurethanes (TPUs) with Grafted Organosilane Moieties: A New Way of Improving Thermomechanical Behavior,” Polymer Engineering and Science, Vol. 42, No. 8, 2002, pp. 1724-1739. doi:10.1002/pen.11066
[24] T. Taniguchi, N. Sato, M. Matsushita, H. Takahashi, T. Suzuki, Y. Hoshino and N. Abe, “Hydrolysis of Polyurethane Resin Using a Twin Screw Reactive Extruder for Recycle,” Kobunshi Ronbunshu, Vol. 56, No. 11, 1999, pp. 709-716. doi:10.1295/koron.56.709
[25] V. W. A. Verhoeven, A. D. Padsalgikar, K. J. Ganzeveld and L. P. B. M. Janssen, “The Reactive Extrusion of Thermoplastic Polyurethane and the Effect of the Depolymerization Reaction,” International Polymer Processing, Vol. 21, No. 3, 2006, pp. 295-308.
[26] J. Chen, J. P. Pascault and M. Taha, “Synthesis of Polyurethane Acrylate Oligomers Based on Polybutadiene Polyol,” Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 34, No. 14, 1996, pp. 2889-2907. doi:10.1002/(SICI)1099-0518(199610)34:14<2889::AID-POLA6>3.0.CO;2-M
[27] S. Massebeuf, C. Fonteix, S. Hoppe and F. Pla, “Development of New Concepts for the Control of Polymerisation Processes: Multiobjective Optimization and Decision Engineering. Part I. Application to Emulsion Homopolymerization of Styrene,” Journal of Applied Polymer Science, Vol. 87, No. 14, 2003, pp. 2383-2396. doi:10.1002/app.12026
[28] C. Fonteix, S. Massebeuf, F. Pla and L. N. Kiss, “Multicriteria Optimization of an Emulsion Polymerization Process,” European Journal of Operational Research, Vol. 153, No. 2, 2004, pp. 350-359. doi:10.1016/S0377-2217(03)00157-7
[29] A. Nayak and S. K. Gupta, “Multiobjective Optimization of Semi-Batch Copolymerization Reactors Using Adaptations of Generic Algorithm,” Macromolecular Theory and Simulations, Vol. 13, No. 1, 2004, pp. 73-85. doi:10.1002/mats.200350033
[30] E. Ginsburger, “Définition et Mise au Point d’une Méthodologie pour L’extrapolation de Procédés de Copolymérisation,” Ph.D. Dissertation, University of Nancy, Lorraine, 2001.
[31] B. Benyahia, M. A. Latifi, C. Fonteix and F. Pla, “Multicriteria Dynamic Optimization of an Emulsion Copolymerization Reactor,” Computer Aided Chemical Engineering, Vol. 28, 2010, pp. 457-462. doi:10.1016/S1570-7946(10)28077-X
[32] F. Pla, R. Rached, S. Hoppe and C. Fonteix, “Design and Multiobjective Optimization of a Novel Reactive Extrusion Process for the Production of Nanostructured PA12/PDMS Blends,” Proceedings of the Nanotech Conference and Expo IIFNBM, Anaheim, 21-25 June 2010, pp.885-888.
[33] P. Courcoux, E. M. Qannari, J. P. Melcion and J. Morat, “Optimisation Multiréponse: Application à un Procédé de Granulation D’aliments,” Récents Progrès en Génie des Procédés: Stratégie Expérimentale et Procédés Biotechnologiques, Vol. 36, No. 9, 1995, pp. 41-47.
[34] C. Azzaro-Pantel, L. Bernal-Haro, P. Baudet, S. Domenech and L. Pibouleau, “A Two-Stage Methodology for Short-Term Batch Plant Scheduling: Discrete-Event Simulation and Genetic Algorithm,” Computers & Chemical Engineering, Vol. 22, No. 10, 1998, pp. 1461-1481. doi:10.1016/S0098-1354(98)80033-1
[35] N. Logothetis and A. Haigh, “Characterizing and Optimizing Multi-Response Processes by the Taguchi Method,” Quality and Reliability Engineering International, Vol. 4, No. 2, 1988, pp. 159-169. doi:10.1002/qre.4680040211
[36] R. Viennet, C. Fonteix and I. Marc, “Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set,” International Journal of Systems Science, Vol. 27, No. 2, 1996, pp. 255-260. doi:10.1080/00207729608929211
[37] F. Bicking, C. Fonteix, J. P. Corriou and I. Marc, “Global Optimization by Artificial Life: A New Technique Using Genetic Population Evolution,” RAIRO-Operations Research, Vol. 28, No. 1, 1994, pp. 23-36.
[38] C. Fonteix, F. Bicking, E. Perrin and I. Marc, “Haploid and Diploid Algorithms: A New Approach for Global Optimization: Compared Performances,” International Journal of Systems Science, Vol. 26, No. 10, 1995, pp. 1919-1933. doi:10.1080/00207729508929145
[39] S. Shabeer and M. Y. Wang, “Multiobjective Optimization of Sequential Brake Forming Processes,” Journal of Materials Processing Technology, Vol. 102, No. 1-3, 2000, pp. 266-276. doi:10.1016/S0924-0136(00)00492-1
[40] V. Bhaskar, S. K. Gupta and A. K.Ray, “Multiobjective Optimization of an Industrial Wiped Film PolyethyleneTerephthalate Reactor: Some Further Insights,” Composites and Chemical Engineering, Vol. 25, No. 2-3, 2001, pp. 391-407. doi:10.1016/S0098-1354(00)00665-7
[41] H. Hamda, O. Roudenko and M. Schoenauer, “Application of a Multiobjective Evolutionary Algorithm to Topological Optimum Design,” In: I. Parmee, Ed., Adaptive Computing in Design and Manufacture, Springer-Verlag, London, 2002, pp. 121-132. doi:10.1007/978-0-85729-345-9_11
[42] L. Muniglia, L. N. Kiss, C. Fonteix and I. Marc, “Multicriteria Optimization of a Single-Cell Oil Production,” European Journal of Operational Research, Vol. 153, No. 2, 2004, pp. 360-369. doi:10.1016/S0377-2217(03)00158-9
[43] B. Roy, “ELECTRE III: Algorithme de Classement Basé sur une Représentation Floue des Préférences en Présence de Critères Multiples,” Cahiers du CERO, Vol. 20, No. 1, 1978, pp. 3-24.
[44] A. Rousseau and J. M. Martel, “Environmental Assessment of an Electric Transmission Line Project: A MCDA Method,” In: M. Paruccini, Ed., Applying Multiple Criteria Aid for Decisions to Environmental Management, Kluwer Academic Publishers, Dordrecht, 1994, pp. 163185.
[45] J. P. Brans and P. H. Vincke, “A Preference Ranking Organization Method: The PROMETHEE Method for Multiple Criteria Decision Making,” Management Science, Vol. 31, No. 6, 1985, pp. 647-656. doi:10.1287/mnsc.31.6.647
[46] Z. Pawlak, “Rough Sets,” Informational Journal of Information and Computer Sciences, Vol. 11, No. 5, 1982, pp. 341-356. doi:10.1007/BF01001956
[47] Z. Pawlak, “Rough Sets. Theoretical Aspects of Reasoning about Data,” Kluwer Academic Publishers, Dordrecht, 1991.
[48] Z. Pawlak, “Rough Set Approach to Knowledge-Based Decision Support,” European Journal of Operational Research, Vol. 99, No. 1, 1997, pp. 48-57. doi:10.1016/S0377-2217(96)00382-7
[49] J. Thibault, R. Lanouette, C. Fonteix and L. N. Kiss, “Multicriteria Optimization of an High Yield Pulping Process,” Canadian Journal of Chemical Engineering, Vol. 80, No. 5, 2002, pp. 897-902. doi:10.1002/cjce.5450800512
[50] M. Hapke, A. Jaszkiewicz and R. Slowinski, “Interactive Analysis of Multiple-Criteria Project Scheduling Problems,” European Journal of Operational Research, Vol. 107, No. 2, 1998, pp. 315-324. doi:10.1016/S0377-2217(97)00336-6
[51] S. Greco, B. Matarazzo and R. Slowinski, “Rough Sets Approximation of a Preference Relation by Dominance Relations,” European Journal of Operational Research, Vol. 117, No. 1, 1999, pp. 63-83. doi:10.1016/S0377-2217(98)00127-1
[52] S. Greco, B. Matarazzo and R. Slowinski, “The Use of Rough Sets and Fuzzy Sets in MCDM,” In: T. Gal, T. Stewart and T. Hanne, Eds., Advances in Multiple Criteria Decision Making, Kluwer Academic Publishers, Boston, 1999, pp. 1-14.
[53] S. Greco, B. Matarazzo and R. Slowinski, “Rough Sets Theory for Multicriteria Decision Analysis,” European Journal of Operational Research, Vol. 129, No. 1, 2001, pp. 1-47. doi:10.1016/S0377-2217(00)00167-3
[54] S. Greco, B. Matarazzo and R. Slowinski, “Rough Sets Methodology for Sorting Problems in Presence of Multiple Attributes and Criteria,” European Journal of Operational Research, Vol. 138, No. 2, 2002, pp. 247-259. doi:10.1016/S0377-2217(01)00244-2
[55] S. Greco, B. Matarazzo and R. Slowinski, “Rough Approximation of a Preference Relation in a Pairwise Comparison Table,” In: A. Skowron and L. Polkowski, Eds., Rough Sets in Knowledge Discovery, Physica-Verlag, Heidelberg, 1998.
[56] K. Zaras, “Rough Approximation of Preference Relation by a Multiattribute Stochastic Dominance for Deterministic and Stochastic Evaluation Problems,” European Journal of Operational Research, Vol. 130, No. 12, 2001, pp. 305-314. doi:10.1016/S0377-2217(00)00046-1
[57] F. H. Otey, B. L. Zagoren and C. L. Mehltretter, “Determination of Hydroxyl Number of Polyoxyalkylene Ethers by Reaction with Toluene Diisocyanate,” Journal of Applied Polymer Science, Vol. 8, 1964, pp. 1985-1989. doi:10.1002/app.1964.070080505
[58] R. Lanouette, J. Thibault and J. L. Valade, “Process Modeling with Neural Networks Using Small Experimental Datasets,” Computers and Chemical Engineering, Vol. 23, No. 9, 1999, pp. 1167-1176.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.