Nanoparticle Electromagnetic Properties for Sensing Applications


Nanoparticles play a crucial role in biomedical and sensing applications. In this paper the design of non-spherical gold nanoparticles, operating in the near infrared and visible regime, is proposed. The structures consist of metallic resonating inclusions of different shapes embedded in a dielectric environment. Different geometries, such as cube, elliptical cylinder and rod are considered. The main purpose of this study is to develop new analytical formulas useful in the nanoparticle design for specific biomedical and sensing applications. These analytical models are developed in order to describe the electromagnetic behavior of the nanoparticles in terms of resonant wavelength position, magnitude and amplitude width for absorption and scattering cross section. The obtained results are compared to the numerical ones, performed by full-wave simulations, and to the experimental values existing in literature. A good agreement among analytical, experimental and numerical results was obtained. Then, the structure is analyzed in terms of sensitivity properties. Exploiting the proposed analytical models, it is possible to design the nanostructures with the desired electromagnetic properties. The results show that these structures can be successfully applied for sensing applications.

Share and Cite:

Spada, L. , Iovine, R. and Vegni, L. (2012) Nanoparticle Electromagnetic Properties for Sensing Applications. Advances in Nanoparticles, 1, 9-14. doi: 10.4236/anp.2012.12002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Moores and F. Goettmann, “The Plasmon Band in Noble Metal Nanoparticles: An Introduction to Theory and Applications,” New Journal of Chemistry, Vol. 30, No. 8, 2006, pp. 1121-1132. doi:10.1039/b604038c
[2] J. B. Pendry, “Playing Tricks with Light,” Science, Vol. 285, No. 5434, 1999, pp. 1687-1688. doi:10.1126/science.285.5434.1687
[3] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. G. Requicha, “Local Detection of Electromagnetic Energy Transport below the Diffraction Limit in Metal Nanoparticle Plasmon Waveguides,” Nature Materials, Vol. 2, No. 4, 2003, pp. 229-232. doi:10.1038/nmat852
[4] J. C. Riboh, A. J. Haes, A. D. McFarland, C. Ranjit and R. P. Van Duyne, “A Nanoscale Optical Biosensor: Real Time Immunoassay and Nanoparticle Adhesion,” The Journal of Physical Chemistry B, Vol. 107, No. 8, 2003, pp. 1772- 1780. doi:10.1021/jp022130v
[5] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger, “DNA Directed Synthesis of Binary Nanoparticle Network Materials,” Journal of American Chemical Society, Vol. 120, No. 48, 1998, pp. 12674- 12675. doi:10.1021/ja982721s
[6] E. M. Larsson, J. Alegret, M. Kall and D. S. Sutherland, “Sensing Characteristics of NIR localized Surface Plasmon Resonances in Gold Nanoring for Application as Ul- trasensitive Biosensors,” Nano Letters, Vol. 5, No. 5, 2007, pp. 1256-1263. doi:10.1021/nl0701612
[7] R. Bukasov, T. A. Ali, P. Nordlander and J. S. Shumaker- Parry, “Probing the Plasmonic Near-Field of Gold Nanocrescent Antennas,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6639-6650. doi:10.1021/nn101994t
[8] W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Letters, Vol. 9, No. 5, 2009, pp. 2077-2082. doi:10.1021/nl900513k
[9] N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chemical Review, Vol. 105, No. 4, 2005, pp. 1547-1562. doi:10.1021/cr030067f
[10] J. Chen, B. J. Wiley, H. Cang, D. Campbell, F. Saeki, L. Au, J. Lee, X. Li and Y. Xia, “Gold Nanocages: Engineering the Structures for Biomedical Applications,” Ad- vanced Materials, Vol. 17, No. 18, 2005, pp. 2255-2261. doi:10.1002/adma.200500833
[11] M. J. Dukes, D. B. Peckys and N. de Jonge, “Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquid,” ACS Nano, Vol. 4, No. 7, 2010, pp. 4110-4116. doi:10.1021/nn1010232
[12] C. N. Ramachandra Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, “Metal Nanoparticles and Their Assemblies,” Chemical Society Reviews, Vol. 29, No. 1, 2000, pp. 27-35. doi:10.1039/a904518j
[13] X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang and S. Nie, “In Vivo Tumor Targeting and Spectroscopic Detection with Surface-Enhanced Raman Nanoparticle Tags,” Nature Biotechnology, Vol. 26, No. 1, 2008, pp. 83-90. doi:10.1038/nbt1377
[14] W. Cai, T. Gao, H. Hong and J. Sun, “Application of Gold Nanoparticles in Cancer Nanotechnology,” Nanotechnology, Science and Application, Vol. 1, 2008, pp. 17-32.
[15] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4370-4379. doi:10.1103/PhysRevB.6.4370
[16] CST Computer Simulation Technology.
[17] C. Bohren and D. Huffmann, “Absorption and Scattering of Light by Small Particles,” John Wiley, New York, 1983.
[18] A. Sihvola, “Electromagnetic Mixing Formulas and Applications,” The Institution of Engineering and Technology, London, 2008.
[19] J. G. Van Bladel, “Electromagnetic Fields,” John Wiley & Sons, Hoboken, 2007. doi:10.1002/047012458X
[20] H.-L. Wu, C.-H. Kuo and M. H. Huang, “Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures,” Langmuir, Vol. 26, No. 14, 2010, pp. 12307-12313. doi:10.1021/la1015065
[21] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, “Gold nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications,” Chemical Society Reviews, Vol. 35, No. 11, 2006, pp. 1084-1094. doi:10.1039/b517615h
[22] P. Hanarp, M. K?ll and D. S. Sutherland, “Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography,” The Journal of Physical Chemistry B, Vol. 107, No. 24, 2003, pp. 5768- 5772. doi:10.1021/jp027562k
[23] T. Chung, S.-Y. Lee, E. Y. Song, H. Chun and B. Lee, “Plasmonic Nanostructures for Nano-Scale Bio-Sensing,” Sensors, Vol. 11, No. 11, 2011, pp. 10907-10929. doi:10.3390/s111110907

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.